Introduction and context

The estimation of solar radiation at ground surface plays a primary role in planning solar energy systems in urban environment. The atmospheric composition strongly influences the amount of surface incoming shortwave radiation (SIS) through absorption, reflection and scattering from trace-gases, clouds and aerosols. Several methods have been developed for retrieving surface global irradiance using satellite observations. At the best of our knowledge, none of them has a spatial resolution capable of describing the PV potential at roof level. Moreover the evaluation of SIS in the Alpine region is still an open issue because in mountainous areas it is necessary to include snow cover detection, special treatment of clouds above snow, image georeferencing and correction of terrain effect.

Objectives

2. Evaluation of the atmospheric extinction of solar radiation as accurately as possible, by radiative transfer models, ground based instruments and satellite data. Both polar orbiting and geostationary satellites will be exploited.

Results

1. A WebGIS for the Alpine town of Bressanone (Italy) showing the classification of the buildings according to the amount of yearly solar radiation.
2. Innovative formulation of existing methods for the evaluation of solar radiation in mountainous areas. The monthly climatological values of atmospheric turbidity will be replaced with daily measurements of atmospheric parameters.

Method

We describe atmospheric influence on SIS at three detail levels:

1. We calculate clear sky irradiance through GIS (Geographic Information Systems) instruments by considering topographical and geometrical effects, afterwards we correct it on monthly basis with the broad-band solar irradiance measured by a pyranometer at ground level;
2. We describe the role of atmospheric composition in SIS. We use a radiative transfer model (RTM) to compute the spectral components. The RTM receives inputs from both ground based instruments and from satellite data. For this purpose we installed a new sun-photometer in Bolzano;
3. We analyze and validate over Alps solar radiation products developed in the framework of CM SAF (Satellite Application Facility for Climate Monitoring). According to the validation results we use a more extended data-set from METEOSAT Second Generation satellites and integrate it by using high-spatial resolution MODIS data to describe atmospheric composition.

Conclusions

An high accuracy solar radiation product is in development specifically for complex topography areas.

Scientific results will be accessible for exploitation into new products. Mountainous areas will take advantage of new systems for planning and monitoring solar energy systems.

The model developed for an Alpine town will be generalized for any mountainous site. Furthermore it will be applied to meteorological scenarios to evaluate the impact of climate change on photovoltaic industry.

This model could significantly facilitate a first assessment for possible future installations and it could help different actors in the PV environment, like developers, installers, financing institutions, as well as decision makers and customers.

An easily accessible WebGIS is used for the dissemination of results. The first data published on this easy to access and interactive tool is the classification of the buildings of Bressanone according to yearly clear sky irradiance corrected with ground pyranometric measurements. New information will be available together with new scientific results.

Acknowledgements

We thank the Institute of Renewable Energies of EURAC, Bolzano, Italy, for the cooperation in the project “PV Initiative”, Emanuele Emili for qualified scientific and practical assistance in the installation of the AERONET sun-photometer, Sebastian Geidel and Christian Steurer for technical support in the realization of the WebGIS.

Funding for this project was provided by the European Funds for Regional Development EFRE 2-IA-97.