The Austrian updateable model output statistic system (A-UMOS): an adaption of the Canadian UMOS design

THE REASON FOR THIS PROCEDURE
- Each (major) change in the numerical model results in a new statistical characteristic of the model output (DMO) and has a big impact on the MOS equations and their quality.
- We need about 300 cases to create stable equations. Because the A-UMOS differs between a cold and a warm season, this means that we have to collect 2 years of data to reach the necessary sample size before being able to switch to a stable standalone new model version.

THE BENEFITS
- The updateable process is closing the gap.
- We do not have to wait until the sample size of the new model version is big enough (~300, 2 years) until we can introduce the new characteristic.
- The weighting scheme guarantees the stability of the mixed data.
- The transition between the old and the new model version is smooth.
- Because the initialisation of a new model version is semi-automatic, we can reduce the amount of work to a minimum.

MAIN PARTS OF THE PROGRAM DESIGN

DAILY CYCLE
- **OBSERVATIONS**
 - Automatic and SYNOP® stations
- **MODEL FORECASTS**
 - Daily data from the ECMWF

WEEKLY CYCLE
- **SSCP DATASETS**
 - Sum of Square Product Matrix. Those are the training data sets for both methods used in the A-UMOS. There is one Dataset for each model version.
- **MOS EQUATIONS**
 - Set of equations computed once a week for both methods.

DAILY FORECASTS
- Once a day the whole set of forecasts will be computed.
- **WEIGHTING SCHEME**
 - Weighting scheme between cold (winter) and warm (summer) season.

Some key points of the system: we are computing 16 deterministic predictands (MLR) and 6 probabilistic predictands (LMDA) in 26 different classes for totally 1045 different stations twice a day (ECMWF 00Z and 12Z run). The forecast is running on a dual core 3GHz desktop machine with 8GB RAM and needs about 200GB disk space. The whole process takes about 90 minutes of time.

MULTIPLE LINEAR REGRESSION (MLR)
To compute the deterministic predictands we are using a simple multiple linear regression with a forward predictor selection method and an additional backward elimination scheme. The number of predictors is limited by a maximum number and a defined improvement threshold.

LINEAR MULTIPLE DISCRIMINANT ANALYSIS (LMDA)
All probabilistic predictors are based on a Fisher’s LMDA. The predictors selection is performed by a pooled Mahalanobis distance test until the improvement of new predictors is less than a defined threshold.

THE SEASON WEIGHTING SCHEME
In order to not mix the winter and summer characteristics of the numerical model (and the nature), a cold and a warm season is implemented with a simple weighting scheme for spring and autumn.

THE MODEL VERSION WEIGHTING FUNCTION
Until the lower sample size limit (SSLOW) is not reached, the new model version will be ignored. Once this first limit is exceeded the new model version with the new characteristic is taken into account with a factor of 1.66 (66% stronger than the old model). With increasing sample size, the new characteristic replaces the old dataset until the upper sample size limit is reached.

Then the training data set is large enough to build standalone stable equations and forecasts and the old model version is no longer used.

\[
N_{new} > SS_{upp} \begin{cases}
\omega_{id} = 0.0 \\
\omega_{new} = 1.0
\end{cases} \text{if } SS_{low} \leq N_{new} \leq SS_{upp} \text{ then:} \\
\omega_{id} = 1.0 \\
\omega_{new} = \frac{SS_{low} - N_{new}}{SS_{low} - SS_{upp}} \frac{(N_{new} - SS_{upp})^2}{SS_{low} - SS_{upp}}
\]

THE BIG ADVANTAGES
- The results and equations stay stable during the transition period between two model versions (ECMWF T799/T1279).
- The MLR and MDA* results show a positive impact of the early introduction of the new model version characteristics.
- The initialisation of a new model version needs just a few hours. Afterwards the MOS-system upgrades itself to a MOS based on the current numerical model statistics.

SOME SAMPLE RESULTS 2010/02/01 to 2011/07/31
Correlation for 10m wind speed 12Z [0–1]

On the left side a sample result for the MLR routine is shown, on the right side one for the LMDA. In green the ECMWF DMO is shown, blue represents the scores of the existing AUSTROMOS2 (ZAMG) and red those of the new A-UMOS. Results for the 12UTC run, 1 February 2010 to 31 July 2011.
The Austrian updateable model output statistics system (A-UMOS)
an adaption of the Canadian UMOS design

Reto Stauffer
Johannes Vergeiner &
Georg J. Mayr

Institute of Meteorology and Geophysics
University of Innsbruck (A)

13 September 2011
Some key words about the A-UMOS

• 1045 sites with ECMWF 00Z and 12Z DMO

• 16 deterministic predictands (MLR)
 (e.g. 2m temperature and dewpoint, cloud amount, 10m wind, ...)

• 6 probabilistic predictands in a total of 26 classes (LMDA)
 (e.g. probability of: precipitation, solid precipitation, thunderstorms, ...)

2 of 12
Some key words about the A-UMOS

- 1045 sites with ECMWF 00Z and 12Z DMO
- 16 deterministic predictands (MLR) (e.g. 2m temperature and dewpoint, cloud amount, 10m wind, ...)
- 6 probabilistic predictands in a total of 26 classes (LMDA) (e.g. probability of: precipitation, solid precipitation, thunderstorms, ...)
- Cold and warm season separate (winter and summer)
- 37 lead times [3, 6, 9, ..., 69, 72, 78, ..., 138, 144]
The program design

Figure: Program design

- **Legend:**
 - **E** Set of equations
 - **F** A-UMOS forecasts
 - **→** Daily cycle (twice a day)
 - **→** Weekly cycle
Why we need the updateable process

• for stable equations we need about 300 – 350 cases in the training data set

Simple synthetical example for a linear regression.
Why we need the updateable process

- for stable equations we need about 300 – 350 cases in the training data set
- frequent NWP model improvements
- each update in the numerical model changes the statistical characteristics

Simple synthetical example for a linear regression.
Why we need the updateable process

- for stable equations we need about 300 – 350 cases in the training data set
- frequent NWP model improvements
- each update in the numerical model changes the statistical characteristics

How do most MOS systems handle this?

Simple synthetical example for a linear regression.
Why we need the updateable process
Why we need the updateable process

- out of this data pool the green regression results
Why we need the updateable process

- out of this data pool the green regression results
- it is not hard to see that the quality of the green regression is not satisfying.
Updateable approach

Merged training data.

The updateable approach. Reduce the impact of the old training data.
Updateable approach

SS_{LOW} SS_{UPP}

Weighting function values

Sample size of the training data set (N_{new})
of the new model version
Updateable approach

With increasing N_{new} the new set of training data gets a stronger weight than the old one.

With increasing N_{new} the old set of training data loses its influence.

Sample size of the training data set (N_{new}) of the new model version.
Updateable approach
Sample result: 10m wind speed $[1/10 \, m \, s^{-1}]$
Sample result: 10m wind speed $[1/10 \, m \, s^{-1}]$

- Improvement over previous system and stable results for all lead times
- Improvements partly due to higher ECMWF model resolution
Sample result: 10m wind speed \([1/10 \, m \, s^{-1}]\)

- improvement over previous system and stable results for all lead times
- improvements partly due to higher ECMWF model resolution
- \textit{BUT} only the updateable process makes it possible to use this improvement!
Sample result: 10m wind speed $[1/10 \text{ m s}^{-1}]$

- improvement over previous system and stable results for all lead times
- improvements partly due to higher ECMWF model resolution
- **BUT** only the updateable process makes it possible to use this improvement!
- the existing MOS seems to ignore the new characteristic because the training set spans several different model versions
Be aware

- you cannot introduce a new model version each year
- using the updateable for the LMDA classifier is a little bit tricky; lower weight for the old training data set means that some infrequent events will be “ignored” after a while.
The benefits

- fast and automatic introduction of the new characteristics
- semi-automatic update to a MOS based on the new model version/resolution (low cost)
- smooth transition period
- stable results in the transition period
Further work

- testing the stability of the model version transition period (the *updateable* periode) for special sites
- try to combine predominant time of days (9 UTC yesterday, today and tomorrow) for a faster increase of the size of the training data set until the sample size is big enough for a standalone new model version MOS
- checking the improvement for the MOS between the current model and the 30yr GFS reforecast with lower resolution
- adapt the method for more complex regression models
- adapt for other predictands

The End