

Probabilistic Estimation of Wind Storm Losses in Germany from a Statistical-Dynamical Downscaling Approach

Kai Born Patrick Ludwig Melanie Karremann Joaquim G. Pinto

Institute for Geophysics and Meteorology, University of Cologne

kai.born@uni-koeln.de

Ale Contraction of the second second

Motivation

cyclone track density **MSLP** storm track ECHAM5 A1B vs 20C IPCC 16 GCMs A1B vs 20C (2070-2100 vs 1960-2000) (2080-2100 vs 1960-2000) 2.60 2.20 1.40 1.00 0.60 0.20 -0.20 -0.60 1.00 1.40 1.80 Ulbrich et al (2008) 2 20 Bengtsson et al (2006) J. Clim -2.60 J. Clim

- Expected SE-expansion of the stormtrack over the Atl / GB towards Central Europe in future climate scenarios
- How does this translate to expected storm-related losses?
- Existing: different large scale studies (Pinto et al., Leckebusch et al., P. Della-Marta et al. ...)
- Application of high-resolution modelling of storms?

Motivation

High resolution modelling of storms easily done (Ensembles project, for loss estimation see e.g. Pinto et al., 2009, 2010, Rauthe et al. 2010, Donat et al. 2010, 2011...)

WGE DWD

- But: are results reliable?
- Quasi-chaotic behaviour
- Demand:

Motivation

- High resolution modelling of storms easily done (Ensembles project, for loss estimation see e.g. Pinto et al., 2009, 2010, Rauthe et al. 2010, Donat et al. 2010, 2011...)
- But: are results reliable?
- Qua

Consequence:

Der Using extreme weather data with high resolution
for impact studies, information about statistical
behaviour in terms of uncertainty and probability is needed.

Example study:

High-res wind storms and estimated losses.

-oss ratio in ‰

0,04

0,03

0.02

Content

- 1. Statistical-dynamical downscaling approach
- 2. Probabilistic aspects
- 3. Steps of SDD
- 4. Discussion of results
- 5. Conclusions

Statistical-Dynamical Downscaling Approach

Given:

- Regionalized daily loss data (houses, private properties) for Germany from GDV
- NCEP and ERA 40 / Interim reanalyses
- ECHAM5 climate scenarios SRES A1B, B1 and A2
- The regional climate model COSMO-CLM (clm_4.1)

Steps of SDD:

- Weather-typing frequencies *p_i* of weather types based on an climate variable *V*
- Dynamical downscaling statistical distribution *P(V)* of climate parameter *V* per weather type
- 3. Connection between forcing parameter(s) V and indicator variable S(V)
- 4. Re-combination weighted sums of distributions provide long-term statistical distribution of indicator variable
- 5. Interpretation: averages, quantiles, return periods...

Comparison between classical and probabilistic SDD

Steps	"Classic" SDD	Probabilistic SDD
Variable	$\overline{V} = rac{1}{\Delta T} \int_{\Delta T} V(ec{x},t) dt$	P(V)
Re-combination	$\overline{V} = \sum_{i=1}^{N} p_i \overline{V}_i$	$P(V) = \sum_{i=1}^{N} P(V \cap W_i) = \sum_{i=1}^{N} P(V W_i) \cdot P(W_i)$
Impact Relation S(V)	(Logistic) Regression, MLR, GLM	Quantile Regression
Key Equation	$\overline{S} = \sum_{i=1}^{N} p_i S(\overline{V}_i)$	$P(S) = \int_V P(S \cap V) dV = \int_V P(S V) \cdot \sum_{i=1}^N P(V W_i) P(W_i) dV$

Probabilistic Aspects

Probabilistic impact view and the Bayes theorem: The key equation

Impact S(V)

Impact probability $P(S) = P(S \cap V)$

Steps of SDD – I. Storm related Weather Types

Clustering of dynamical 3day weather developments for winter (Oct-Mar) after Leckebusch et al. (2008)

> Result: 55 stormrelated weather types

Right picture:

Bottom 7 rows: frequencies of WT occurrences, depending on loss intensity

Top 2 rows: numbers of simulated episodes (bottom) and storms (top) per WT

Institute for Geophysics and Meteorology Department Meteorology Kai Born 20.10.2011

iteps of SDD – II. Dynamical Downscaling

Department Meteorology

Kai Born

20.10.2011

Constants of SDD – III. Wind-Loss-Relation

Method: Quantile regression model for losses as a function of wind gust

Institute for Geophysics and Meteorology Department Meteorology Kai Born 20.10.2011

IV. Re-Combination

Estimated medians of normalized loss patterns for 4 storm-prone WT classes

Top left: Kyrill, Wiebke, Emma Top right: Agnes / Barbara, Ingo Bottom Left: Vivian, Franz III, Per Bottom right: Lothar, Desiree, Silke

Institute for Geophysics and Meteorology Department Meteorology

Discussion of Results

- Two types of graphics:
 - Filtered time series of loss expectation values, 50%and 95%-quantiles
 - Return levels of loss expectation values from a generalized Pareto fit
- Validation: Historical series & 20C
- Future series

Coiscussion of Results – Historical vs. ECHAM 20C

- Changes in averages, medians (2-yr-return value) and 95% quantiles (20-yr-return value)
- Moving 21-yr window, 90%-uncertainty range from bootstrapping

Constantsion of Results – Historical vs. ECHAM 20C

Return periods of **average** annual loss frequencies by standard GPD fit,

Black: pooled ensemble members of ECHAM5 scenarios for the 20C period (1960-2000)

Grey: loss estimation from NCEP reanalysis 1958-2008

Constant of Results – Climate Scenarios ECHAM

- Changes in averages, medians (2-yr-return value) and 95% quantiles (20-yr-return value), three pooled ensemble members, black: ECHAM5 20C
- Moving 21-yr window, 90%-uncertainty range from bootstrapping

Ciscussion of Results – Climate Scenarios ECHAM

Return periods of **average** annual loss by standard GPD fit, pooled ensemble members of ECHAM5 scenarios A2, A1B and B1 for the period 2061-2100

Institute for Geophysics and Meteorology Department Meteorology Kai Born

cission of Results – Climate Scenarios ECHAM

Return periods of average annual loss by standard GPD fit, pooled ensemble members of ECHAM5 scenarios A2, A1B and B1 for the period 2061-2100

Institute for Geophysics and Meteorology

cussion of Results – Climate Scenarios ECHAM

Department Meteorology

Kai Born 20.10.2011

Conclusions

- Probabilistic extension of statistical-dynamical downscaling approach allows uncertainty estimates of climate change impact
- Application on wind-storm related insurance losses show a significant increase in losses of both average and extreme storms, but with slightly stronger intensification of severe events in ECHAM5 future climate scenarios
- Climate signal in terms of natural variability significant, in terms of wind-loss-relation uncertainty possibly hidden
- Underestimated decadal variability in ECHAM5 scenarios?

Acknowledgement: The Association of German Insurances (GDV) provided insurance data and funded the project in which this study was undertaken

Alternative Slides

as supplemental material

Institute for Geophysics and Meteorology Department Meteorology Kai Born 20.10.2011

Statistical-Dynamical Downscaling Approach

- Combination of dynamic downscaling (GCM -> RCM), and statistics (relevant weather-types)
- Aims at statistical characteristics of longer periods
- Potential of probabilistic extension

Given: Regionalized daily loss data (houses, private properties) for Germany from GDV

- NCEP and ERA 40 / Interim reanalyses
- ECHAM5 climate scenarios SRES A1B, B1 and A2
- The regional climate model COSMO-CLM (clm_4.1)

Steps:

- 1. Storm related WT classification for historical and scenario periods
- 2. Dynamical Downscaling using COSMO-CLM fro WT episodes
- 3. Probabilistic Wind-Loss relation assessment
- 4. Recombination
- 5. Interpretation

Probabilistic Aspects

- Probabilistic interpretation for assessing uncertainties
- Decadal variability variability in frequencies of WT occurrence
- Impact uncertainty uncertainty in the climate-impact relation S(V)

Temporal development of grouped WT frequencies

Secondary Storm Cluster

Postprocessing:

- "intelligent" interpolation to 1 km² grid
- Aggregate wind gust distributions in districts

A State of the sta

Postprocessing:

- "intelligent" interpolation to 1 km² grid
- Aggregate wind gust distributions in districts

Discussion of Results - Validation

Facuity of Mathematics and Natural Sciences

- Approach to estimate different sources of uncertainty:
 - Wind-loss relation
 - Dynamic realization
 - GPD parameter estimation

Results and Interpretation: Relative regional losses in ECHAM5 climate scenarios

Institute for Geophysics and Meteorology Department Meteorology Kai Born 20.10.2011

-10 0 10 20 30 40 50