UK climate trends, as revealed by 1981-2010 statistics

Met Office
Jack Eyre, Dan Hollis, Mike Kendon, Tim Legg and John Prior

\square

The Met Office has recently calculated a new set of 30-year normals for temperature ㄷ rainfall, sunshine and a number of associated variables. This has been done in line 은 with WMO recommendations, and in common with many other meteorological services O around the world. The new long-term averages (LTAs) have been produced as gridded datasets, from which regional and national values are calculated, and will provide the normal values against which the next decade of weather will be assessed. In addition, the averages can be compared to previous averaging periods (1961-1990 and 1971-2000) to reveal trends in the data. This poster gives an overview of the methodology, a selection of the results, and some analysis of trends.

Method | Monthly |
| :---: |
| station |
| data |

Areal averages are produced for 10 regions of the UK, on monthly, seasonal and annual timescales. Shown above are changes from one averaging period to the next. Except for Scotland in winter, both seasons show opposite trends from one period to the next.

The border of this poster shows maps of winter mean temperature as an anomaly relative to the 1981-2010 average. The series runs from winter 1911 until the most recent winter, December 2011-February 2012.
The period 1998-2008 is notable for a run of mild winters. Winters 2010 and 2011 broke this run, with the 2010 winter being the coldest since 1979. Other particularly cold winters include 1963, 1947 and 1929. For further details see Prior \& Kendon (2011)

 sunshine for the three averaging periods. Effects of altitude - lower temperature and sunshine, higher rainfall - are visible on all maps. Upward trends have occurred in many areas for all three variables; these are most evident for temperature.
 averaging period Almost without exception, each month has become warmer from one period to the next.
Notably, December cooled due to the inclusion of the very cold December 2010 - a reminder that individual events can have an impact on long-term averages!

References

Perry, M. and Hollis, D. (2005), The development of a new set of long-term climate
averages for the UK. Int. J. Climatol. 25: 1023 - 1039 . doi: 10.1002 ijic. 1160 averages for the UK. D... . C11. The disruptive snowfalls and very low temperatures of late
Prior, J. and Kendon, M. (2011) Prior, J. and Kendon, M. (2011), The distuptive snowtalls and very low temperatures of late
2010. Weather, 66: $315-321$. doi: 10.1002/wea.874 P. Brohan, J.J. Kennedy, I. Harris, S.F.B. Tett and P.D. Jones, Uncertainty estimates in
regional and global observed temperature changes: a new dataset from 1850. J. Geophys.
. Res, 111, D12106, doi:10. $1029 / 2005 \mathrm{JD} 006548$
Parker, D.E., T.P. Legg, and C.K. Folland. 1992. A ne
Series, 1772-1991. Int. J. Clim., Vol 12, pp 317-342 regional averages

Annual mean temperature anomaly for the UK, with the Central England Temperature (CET) series, and HadCRUT3 global average, for comparison. Correlation with the CET is good throughout. The general late $20^{\text {th }}$ century warming trend is in common with the global series, but earlier in the series, differences exist.

this regressio analysis were interpolated using inverse distance
weighting
The value at any grid point is the sum of the regression term and the interpolated residual.
The chart, right, shows the size of the network over the 400-600 years - genera stations (left axis), 5000 rainfall stations at times (right axis).
All of these had to be $\overline{\mathbf{O}}$ quality controlled
 tools lik the left - a strain for the \geq eyes and the brain!
After the infilling process and quality control, station averages were used to produce 1 km grids. A sion analysis was used altitude 등 proximity to coast, and
Interpolat urban land use.

Time series

