

UAS Measurements of the Boundary Layer Late Afternoon Transition

Gerald Lohmann, Sabrina Martin, Astrid Lampert, Peter Vörsmann gerald.lohmann@tu-bs.de

Łódź, September 13, 2012

Outline

- BLLAST campaign
- M²AV technology
- Flight patterns
- Initial results
- Conclusion and Outlook

Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 2 / 19

BLLAST: acronym and objective

- Boundary Layer Late Afternoon and Sunset Turbulence
- Improve understanding of afternoon transition from convective boundary layer to nocturnal and residual layer by means of ...
 - → ... modelling and observations

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 3 / 19

BLLAST 2011 field experiment at a glance

- International campaign in southern France
- Scientists from nine different countries
- Many different measuring technologies, among them ...
 - → ... Unmanned Aircraft Systems (UAS)

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 4 / 19

Meteorological Mini Aerial Vehicle (M²AV)

- 2 m wingspan, 6 kg take-off weight
- 22 m/s cruising speed, up to 50 min flight duration
- Telemetry link to ground station up to 5 km
- Automatic flight with autopilot
- Measuring temperature, humidity and wind vector

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 5 / 19

Meteorological Sensors: 3d wind vector

Five-hole probe

- Angles of attack and sideslip: ± 20° (airframe coordinate system)
- Fast response (~ 30 Hz)
- Small (Ø 6 mm) and lightweight (22 g)

Wind vector calculation

- GPS and inertial measurement unit (IMU)
 - → Precise location and attitude
 - Converting angles of attack and sideslip from airframe coordinates to wind vector

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 6 / 19

M²AV flights during BLLAST 2011

Date	Takeoff (UTC)	Altitudes (m agl)
30 June	17:22	200, 400
30 June	18:44	200, 400
01 July	14:27	300
01 July	18:47	200, 250, 300
02 July	14:19	200, 250, 300
02 July	16:27	200, 250, 300
02 July	18:13	200, 250, 300
02 July	20:20	150, 200, 250
05 July	12:25	200, 250, 300
05 July	14:25	250, 325, 400
05 July	15:40	250, 325, 375, 400, 500
05 July	17:10	250, 375, 500
05 July	18:30	250, 375, 500

Technische Universität 1 Braunschweig S

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 7 / 19

Institute of Aerospace Systems

Flight pattern seen from above

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 8 / 19

Flight pattern seen from above

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 9 / 19

Flight pattern seen from the ground

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 10 / 19

Flight pattern seen from the ground

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 11 / 19

Flightlegs relevant for turbulence measurements

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 12 / 19

Flightpaths in relation to boundary layer height

Estimation of boundary layer height from ...

Time of day [UTC]

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 13 / 19

Institute of Aerospace Systems

Turbulence Intensity

- Split wind speed (ff) into mean (\overline{ff}) and turbulent (ff ') parts
 - → $ff' = ff \overline{ff}$
- The average of the square of the turbulent part ff ' is known to be the variance $\sigma_{_{\rm ff}}^{\ 2}$

$$\Rightarrow \sigma_{\rm ff}^2 = \overline{\rm ff'^2}$$

- The square root of the variance is defined as the standard deviation $\sigma_{_{\rm ff}}$

→
$$\sigma_{\rm ff} = (\overline{\rm ff'^2})^{1/2}$$

- $\sigma_{\rm ff}$ relative to the mean wind $\overline{\rm ff}$: dimensionless measure of turbulence intensity I
 - \rightarrow I = $\sigma_{\rm ff}$ / ff
- Averaged for straight flight legs (~ 1 km)
 - → (+/-) 45 sec. averaging time

Turbulence Intensity on July 2, measured by M²AV

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Slide 15 / 19

Turbulence Intensity on July 2, measured by M²AV

Time of day [UTC]

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition

Slide 16 / 19

Summary / Conclusion

- M²AV participated in BLLAST campaign 2011
 - Restrictions on flightpath due to techincal difficulties
 - Decay of turbulence intensity was observed on small scales
- Resolve existing problems with additional flights \rightarrow increase available data
- M²AV is a tool well suited for investigation of turbulence ...
 - ... could have been put to better use if it hadn't been for the technical problems

Slide 18 / 19

Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition

Thank you for your attention!

Special thanks to the BLLAST team for data and support!

Technische Universität Braunschweig

13 September 2012 | Gerald Lohmann | UAS Measurements of the Boundary Layer Late Afternoon Transition Contact: gerald.lohmann@tu-bs.de

Institute of Aerospace Systems