

A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

21st century climate assessment for Hungary using different future pathways

I. Pieczka, R. Pongrácz, J. Bartholy Department of Meteorology, Eötvös Loránd University, Budapest, Hungary

<u>10 – 14 September 2012</u>

ŧ.

Outline

- > Applied model: PRECIS
- Horizontal resolution: 0.22°
- > Scenarios: A2, A1B, B2

- Added Value Index \succ
- **Bias correction**
- Simulated climate change

<u>10 – 14 September 2012</u>

Ð

Does PRECIS add value to its driving GCM?

Kanamitsu & DeHaan, 2011

Gaussian distribution

Modified approach

empirical distribution

10 – 14 September 2012

Added Value Index

Adapted from Kanamitsu & DeHaan, 2011:

AVI (temperature)	
D	-0.0006145
J	-0.0006356
F	-0.000004
Μ	-0.0000248
Α	0.0000181
Μ	0.0448724
J	-0.0119884
J	-0.0232448
Α	0.1144206
S	-0.0053201
0	-0.0597612
Ν	-0.0000683
AVI (precipitation)	
D	-0.0055257
.1	-0.0258007

-0.0178891

0.0235165

-0.0252658

-0.0974444

0.0271230

0.0126867 0.0085146

0.0051816

-0.0315878 -0.0029081

AVI (temperature) [0,3-0,4) [0,4-0,5) [0,5-0,6) [0,6-0,7] S 0 AVI (precipitation) [0,3-0,4) [0,4-0,5) [0,5-0,6) [0,6-0,7) Μ Α Μ Α S 0

Modified approach:

The two methods produce similar results

 The regional model adds value to the GCM (orange rectangles)
Precipitation: more detailed physics

<u>10 – 14 September 2012</u>

F

Μ

Α

Μ

J

S

0

Ð

Why is bias correction necessary?

CC

BY

Applied bias correction method: monthly-based quantile matching

Formayer and Haas, 2010

Additive factor (for temperature):

$$f_a(y) = F_o^{-1}(y) - F_m^{-1}(y) = x_o - x_m$$

Multiplicative factor (for precipitation):

 $f_m(y) = \frac{F_o^{-1}(y)}{F_m^{-1}(y)} = \frac{x_o}{x_m}$

Application of correction to daily temperature data

10 – 14 September 2012 (†)

CC

BY

Results: 21st century climate assessment for Hungary

Simulated seasonal temperature change by 2071–2100 (reference period: 1961–1990)

Projected change: increasing temperature (especially in summer)

<u>10 – 14 September 2012</u>

A

CC

Year-to-year variation of seasonal mean simulated temperature

~ 2 °C, confirmed by observations

Statistically significant trend in each season

<u>10 – 14 September 2012</u>

Ē

CC

Temperature indices

<u>10 – 14 September 2012</u> $(\mathbf{\hat{I}})$

CC

BY

Simulated seasonal precipitation change by 2071–2100 (reference period: 1961–1990)

Projected change: summer decrease, winter increase

<u>10 – 14 September 2012</u>

(†)

CC

Annual distribution of monthly mean precipitation (mm/month)

10 – 14 September 2012 Ð

CC

Consecutive dry days

1961-1990, E-OBS/HU: 28 days

Significant increase in the maximum length of consecutive dry days in summer is projected

<u>10 – 14 September 2012</u>

Ē

Conclusions

> The regional model improves the results of the global model > Bias correction: important role when analyzing threshold-based climate indices \succ The climate of Hungary is very likely to become significantly warmer, and in summer substantially drier

Thank you for your attention!

The European Union and the European Social Fund have provided financial support to the project under the grant agreements TÁMOP 4.2.1/B-09/1/KMR-2010-0003 and TÁMOP-4.2.2/B-10/1-2010-0030. Participation on the conference has been supported by the European Meteorological Society through a Young Scientist Travel Award.

<u>10 – 14 September 2012</u>

