Analysis of the decoupling between surface heat flux and temperature gradient during afternoon transition

Estel Blay Carreras¹, E. Pardyjak², D. Pino¹, M. Lothon³, F. Lohou³ (1)Universitat Politècnica de Catalunya (UPC), SPAIN (2)University of Utah, USA (3)Laboratoire d'Aérologie, CNRS, FRANCE

Afternoon and Evening Transition

(UPC)

Catalunya

0

-

Politècnica

Universitat

Motivation

- 1) Does the buoyancy flux cease at the same time the local gradient of the virtual potential temperature becomes positive (as predicted by flux gradient theory)?
- 2) If a delay exists, can it be parameterized? What are the physics that govern the delay?
- 3) Can these shortcomings be explained with a simple counter gradient formulation?
- 4) Do turbulent viscosity and thermal diffusivity play an important role during afternoon transition at the surface layer?

- Lannemezan, France 14 June 8 July 2011
- Lead Scientist M. Lothon, Laboratoire d'Aérologie, CNRS, FRANCE

Objectives of the BLLAST Campaign

- To understand the importance of surface heterogeneity during the Late Afternoon Transition (LAT).
- To study the vertical structure and evolution of the boundary layer itself during LAT.

Skin Flower Tower – Site 1

- 3D Sonics at 6 Levels
- FW TCs at 9 levels

Temperature Profile Observations

There is a delay time in all the IOP analyzed (30-70 min)

MOST Temperature Gradients

Catalunya (UPC)

d b

Politècnica

Universitat

Does delay time appear for the last eddy

Convective time :

Why some days DT is similar to the convective time?

Obukhov Length

 $\zeta = -\frac{z}{L} = \frac{kzg(\overline{w'\theta_{v'}})}{\overline{z}}$

Convective days

24/06 & 30/06: IOPs with large *-z/L* averaged between 12 UTC-16:45UTC have small DT-CT.

Weakly convective days

25/06 & 27/06 \rightarrow IOP with small -z/L averaged between 12UTC-16:45UTC have large DT-CT.

✓ Weakly convective IOPs have larger u_* → more horizontal turbulence → larger delay time

Why??

Obukhov Length

Turbulent Rayleigh number physical approximation

 $Ra \rightarrow$ compares the destabilizing forces (buoyancy forces) with the stabilizing forces (viscosity and thermal diffusivity).

Bénard problem \rightarrow turbulent viscosity and turbulent thermal diffusivity difficult convection movements.

In all IOP buoyancy flux ceases before Ra is negative \rightarrow a physical approximation \rightarrow during this period viscosity and thermal

diffusivity may play a role in the slow down of the cease of the convection.

Conclusions

- There is a <u>delay</u> between buoyancy flux cease and the change in the vertical gradient of θ_v .
- During moderate convective days, the delay time is small and close to the last eddy movement (<u>convective time</u>).
- When convection is lower, larger u_{*}, the delay time is larger due to the increase of <u>horizontal turbulence</u>.
- <u>**Turbulent viscosity and thermal diffusivity** may help to slow down the last eddy movement increasing the convective time.</u>

Thank you

This project was performed under the Spanish MINECO projects CGL2009-08609, and CGL2012-37416-C04-03.