1. Introduction

Surface ozone (O_3) concentrations are strongly influenced by meteorological variables (e.g., solar radiation and wind) and photochemical reactions. Previous studies have suggested that meteorological variability has an important role in diurnal, daily, seasonal and annual cycles of O_3 levels (2, 5, 9, 11). The solar cycle is statistically significant with O_3’s long-term trends, influencing photochemical reactions and vertical transport of O_3 precursors (4). The temporal O_3 variability is also affected by temporal variations in the intensity of human activities, contributing to the temporal pattern of O_3 precursor’s emissions (1).

The pattern cycle of O_3 in rural areas is characterized by the presence of a single maximum and minimum. The minimum O_3 values are recorded in the period from night until the first hours of morning. During the morning O_3 levels increase gradually after the period of higher intensity of O_3 precursor’s emissions. The maximum is achieved in the early afternoon due to the period of higher photochemical activity and poor dispersion. In the late afternoon, O_3 levels present a marked reduction due to its consumption by titration with nitrogen monoxide (NO) emissions.

In urban areas the daily cycle of O_3 presents two relative maximum values. The second peak occurs during the evening, usually, rather than the rush-hour maximum. Studies proved which presence of the second peak indicate that it is a result of poor dispersion conditions and by process of vertical and/or horizontal transport of older air masses with high levels of O_3 (1, 2, 5–8).

The knowledge of O_3 temporal variability is an important factor that contributes to an adaptation of control policies for O_3 concentration peaks in order to protect the population and environment from its exposure.

3. Results

As general characteristics, Fig. 2 shows that in urban type stations the maximum concentration of O_3 during the morning appears at around 16:00 during most of the year; a secondary maximum appears during the early morning, at around 4:00; the minimum values of the curves appear at around 8:00. This is also observed for the suburban stations during autumn and winter months, only. These characteristics where not observed for the rural stations, in which the maximum ozone concentration appears as smooth afternoon peaks during spring and summer, and the minimum values have similar values between 0:00 and 8:00.

Fig. 3 shows the daily individualized climatological pattern found for each station present in a certain region (1-6). The black vertical lines group these regions, and are numerated in the top x axis of each graphic. The early morning secondary maximum peak of O_3 is expressive in regions 3 and 5. During winter (JFM) and autumn (ONM) the ozone concentrations show higher values in region 5.

When compared to the other regions, the O_3 average urban values in region 5 are higher during the daily pattern. This characteristic is visible also in rural background stations over the four seasons for regions 5 and 1.

These patterns indicate that these regions may be under the influence of air masses photochemically active during transport from regions with high emissions of O_3 precursors. This may also be supported by the time of the maximum value found over these same regions, which is around 28:00 during spring and summer. For both regions, emission sources may be located in Portugal as well as in Spain.

It is also visible that the early morning secondary peak is more intense during spring (AMJ) over urban background stations. As expected, O_3 titration is more intense when the human daily activity starts and radiation is available and at the end of the day.

2. Methods

O_3 measurements from urban, suburban and rural background stations (Fig. 1), during several years, were used to compute the O_3 concentration climatology. Only stations with 5 or more years of available data were considered.

An inter-annual mean for every hour of the year was calculated and a 30-day moving average was applied to the annual cycle. The daily cycle was filtered using a 3-hour moving average.

The daily cycles for every day of the year were grouped into the months of winter (January to March), spring (April to June), summer (July to September) and autumn (October to December), and average daily cycles were computed for each station.

Daily cycles for each background station are presented, with the median cycle overlaid, in Fig. 2, for each environment type.

Fig. 3 shows the spatial distribution of the daily cycles of O_3 concentration, by displaying O_3 concentrations, for each hour of the day, for each station, grouped by region code (as shown in Fig. 1).

4. Final Remarks

The present work applies statistical treatment, usually applied on meteorological data, to O_3 quality data measured in background environment stations subject to different influences: urban, suburban and rural. Background environment stations were chosen in order to diminish local emission influences on the measured data. Also, the ozone time series analyzed span from 5 to 22 years which was still a lack in literature.

The climatological behavior of the air quality stations shows differences among the annual seasons (as defined in this work) and the type of stations, as expected. The unexpected finding relates with the secondary ozone maximum, which is reported in the literature as occurring in the afternoon whereas the data in Portugal show this secondary maximum in the early morning, at around 4:00, especially in urban background stations. This characteristic may occur when the residual layer above stable surface layers may be at the same level of the stations sensors, which is highly probable during very cold nights. This residual layer may have contribution from local photochemistry, medium distance transport.

References

Funding Sources

This work was supported by the DYNOZONE project (PTDC/CTE-ATM/125507/2010) funded by the FCT (Fundação para a Ciência e a Tecnologia, Portugal).