On the Benefits of a High-Resolution Analysis for Convective Data Assimilation of Radar Observations using a Local Ensemble Kalman Filter

Heiner Lange and George C. Craig

Hans-Ertel-Centre for Weather Research, Data Assimilation Branch
LMU Munich
in Co-Operation with DWD, Offenbach
(Hendrik Reich, Andreas Rhodin)

Reading, 13.09.2013
Limited predictability, scale-dependent

Obstacles of forecasts:

- Forecasts tainted by model error
- Predictability limited by error growth in the chaotic atmospheric system
Limited predictability, scale-dependent

Obstacles of forecasts:
- Forecasts tainted by model error
- Predictability limited by error growth in the chaotic atmospheric system

Question:
Is an ensemble forecast (a) from a fine EnKF analysis better than (b) from a coarse analysis?

Forecast window: 3 hours
Limited predictability, scale-dependent

Obstacles of forecasts:
- Forecasts tainted by model error
- Predictability limited by error growth in the chaotic atmospheric system

Question:

*Is an ensemble forecast *(a) from a fine EnKF analysis **better than** *(b) from a coarse analysis?*

Forecast window: 3 hours
OSSE: Fine vs. Coarse Assimilation

Local analyses of storm systems using LETKF (Hunt et al, 2007)

Nature Run
single cells of an elongated squall line

Fine Analysis R4
single cells taken from best fitting member(s)
OSSE: Fine vs. Coarse Assimilation

Local analyses of storm systems using LETKF (*Hunt et al, 2007*)

- **Nature Run**: single cells of an elongated squall line
- **Fine Analysis R4**: single cells taken from best fitting member(s)
- **Coarse Analysis R16**: coarse fit from coarsely fitting member(s)
COSMO model setup

Domain: 198 x 198 x 50 gridpoints
periodic lateral boundaries conditions

Resolution: 2 km horizontally
Nature Run and Ensemble

COSMO model setup

- **Domain:** 198 x 198 x 50 gridpoints
 periodic lateral boundaries conditions

- **Resolution:** 2 km horizontally

- **Initial state:** Horizontally homogenous sounding,
 \[\text{CAPE} = 2200 \, \text{J/kg} \]
 random white noise on T (0.02 K) and W (0.02 m/s)
 in the boundary layer
Nature Run and Ensemble

COSMO model setup

- **Domain:** 198 x 198 x 50 gridpoints
 periodic lateral boundaries conditions

- **Resolution:** 2 km horizontally

- **Initial state:** Horizontally homogenous sounding,
 \[\text{CAPE} = 2200 \frac{J}{kg}, \]
 random white noise on \(T \) (0.02 K) and \(W \) (0.02 m/s)
 in the boundary layer

- **Model:** Full COSMO physics with active radiation scheme

- **Forecast:** 8 hour spinup until convection evolves:
 - long-lived cells, lifetime \(\geq 6 \) h
 - horizontal position *fully random* in ensemble
Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of *radial wind* and *(no)-reflectivity*
- analysis produced by LETKF (*Hunt et al, 2007*) in KENDA\(^a\)

\(^a\) Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)
Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (Hunt et al, 2007) in KENDA
- 3 hours cycled assimilation
- 3 hours ensemble forecast

\(^a\) Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)
Fine vs. Coarse Assimilation

Assimilation setup

- 50 member ensemble (perfect model)
- simulated observations of radial wind and (no)-reflectivity
- analysis produced by LETKF (*Hunt et al, 2007*) in KENDA
- 3 hours cycled assimilation
- 3 hours ensemble forecast
- Fine assimilation scheme R4
- Coarse assimilation scheme R16

a Kilometre-scale ENsemble Data Assimilation, developed at DWD Offenbach (Hendrik Reich, Andreas Rhodin)
Fine Analysis Scheme (R4)

- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)
Fine vs. Coarse Assimilation Scheme: Setup

Fine Analysis Scheme (R4)
- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)
- Position of clouds roughly coincident with observations
- Spurious clouds allowed
- Larger error and variance
Fine vs. Coarse Assimilation Scheme: Setup

<table>
<thead>
<tr>
<th>Fine Analysis Scheme (R4)</th>
<th>Coarse Analysis Scheme (R16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 4 km Localization length</td>
<td>Position of clouds roughly coincident with observations</td>
</tr>
<tr>
<td>2 2 km Observations</td>
<td>Spurious clouds allowed</td>
</tr>
</tbody>
</table>
| **3** R-matrix:
 $R_{\text{wind-obs}} = (5 \text{ m/s})^2$
 $R_{\text{refl-obs}} = (20 \text{ dBZ})^2$ | **Larger error and variance** |
| **4** 5 min assimilation interval | |

- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance
Fine vs. Coarse Analysis Scheme: Setup

Fine Analysis Scheme (R4)
1. 4 km Localization length
2. 2 km Observations
3. \(R \)-matrix:
 - \(R_{\text{wind-obs}} = (5 \frac{m}{s})^2 \)
 - \(R_{\text{refl-obs}} = (20 \text{ dBZ})^2 \)
4. 5 min assimilation interval

- Convergence of analysis onto observed clouds
- Spurious clouds suppressed
- Small error and variance

Coarse Analysis Scheme (R16)
1. 16 km Localization length
2. 8 km SuperObservations
3. Inflated \(R \)-matrix:
 - \(R_{\text{wind-SuperObs}} = (5 \frac{m}{s})^2 \)
 - \(R_{\text{refl-SuperObs}} = (20 \text{ dBZ})^2 \)
4. 20 min assimilation interval

- Position of clouds roughly coincident with observations
- Spurious clouds allowed
- Larger error and variance
Assimilation Results: Nature vs. Analysis Ensemble Means

Nature Run 01, 14 UTC
R4 Analysis EnsMean
R16 Analysis EnsMean

Heiner Lange
Assimilation Results: Nature vs. Analysis Ensemble Means

Nature Run 01, 15 UTC
R4 Analysis EnsMean
R16 Analysis EnsMean

Heiner Lange
Assimilation Results: Nature vs. Analysis Ensemble Means

Nature Run 01, 16 UTC
R4 Analysis EnsMean
R16 Analysis EnsMean

Ref Max (dBZ)

T (K), z = 150m

W (m/s), z = 3500m
Assimilation Results: Nature vs. Analysis Ensemble Means

- **Nature Run 01, 17 UTC**
- **R4 Analysis EnsMean**
- **R16 Analysis EnsMean**

Ref Max (dBZ)

T (K), z = 150m

W (m/s), z = 3500m

[Images of data visualizations showing temperature and wind fields at different heights and distances.]
Fine Analysis R4, Realization 01, t = 17 UTC

Nature Run Member 001 Member 013

Member 025 Member 037 Member 050

Distance (km)
Analysis Members R16

Coarse Analysis R16, Realization 01, t = 17 UTC

Nature Run

Member 001

Member 013

Member 025

Member 037

Member 050

Heiner Lange
Fine vs. Coarse Storm Assimilation
Analysis Ensemble Distributions

Ensemble distribution where $\text{Refl}_{\text{nature}} = 40 \pm 0.5 \text{ dBZ}$

- **R4**
- **R16**
Fine vs. Coarse EnKF Analyses

Experimental Setup of OSSE

Results

Cycled Assimilation

Ensemble Forecasts

RMSE-Statistics: U, W

Heiner Lange

Fine vs. Coarse Storm Assimilation 10 / 14
Forecast Results: Nature vs. Forecast Ensemble Means

Nature Run 01, 20 UTC

R4 Forecast EnsMean

R16 Forecast EnsMean

Refl Max (dBZ)
DAS-DIS Displacement Score

Displacement of forecast field with respect to observations, measured by the amplitude of the morphing vector field:

![Graph showing DAS-DIS of Refl_Max (Mean Score of Ensemble Members)]
Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity.
- 3 hours of cycled assimilation followed by 3-h forecast.
Methods:
- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine scheme R4
- precise fit onto observed clouds
- low analysis errors and spread
- skillful 3-h ensemble forecasts
Methods:

- Successful assimilation of long-lived convection by LETKF using only radar observations of radial wind and reflectivity
- 3 hours of cycled assimilation followed by 3-h forecast

Fine scheme R4

- precise fit onto observed clouds
- low analysis errors and spread
- skillful 3-h ensemble forecasts

Coarse scheme R16

- initializes equally good 3-h forecasts
- needs much less computational power
Conclusions, Outlook

Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology
Conclusions, Outlook

Conclusions
- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

Outlook
- radar assimilation schemes in KENDA of COSMO-DE and COSMO-MUC
- predictability horizons of convection in real-world model
Conclusions

- less overfitting in coarse scheme
- coarse analysis possibly closer to model climatology

Outlook

- radar assimilation schemes in KENDA of COSMO-DE and COSMO-MUC
- predictability horizons of convection in real-world model

References

Hunt et al 2007
Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter

H. Lange and G.C. Craig 2013
On the Benefits of a High-Resolution Analysis for Convective Data Assimilation of Radar Observations using a Local Ensemble Kalman Filter
Monthly Weather Review, to be submitted
Rigorous Convergence vs. Relaxation

(a) $\sigma_o = 5$ dBZ

(b) $\sigma_o = 20$ dBZ