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Can feedback analysis be used to understand efficacy differences
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Climate sensitivity A and efficacy r describe the F ol ’
global mean surface temperature response to a 2=
radiative forcing RF: RN
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Radiative forcings from perturbations of different . =W AN K L =

kind or structure may cause distinctive radiative
feedbacks (e.g. water vapour feedback, right), in
turn leading to distinctive efficacies. |
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RF = 1 W/m? from Stuber et al. (2005)
AR
feedbacks AT.=0.86 K (CH4); 0.73 K(C0O2); 0.55 K (O3UT); 1.31 K (O3LS)

cloud, water vapour,
albedo, temp.

Global distribution of climate feedbacks for a CO,
doubling simulation
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Global mean feedbacks:
= Temperature feedback
split up:
* Planck feedback ay,,:
- 3.10 Wm—2K-"
* Lapse rate feedback a;p:
- 0.86 Wm—=2K-"

e Stratospheric temperature
feedback ag,:

+ 0.56 Wm=2K-1
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" Water vapour feedback a,:

+2.01 Wm-=2K-!
= Surface albedo feedback ay,:
+ 0.23 Wm=2K-!
" Cloud feedback a,: :
+0.29 Wm2K-"
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Feedbacks under a variety of forcings ——————
Climate sensitivity and efficacy may vary under 10 -
o different type of radiative forcings ]
o different strength of radiative forcings 150
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Radiative forcing Climate sensitivity A

Simulation experiment Efficacy r
P K/'Wm2 [95% confi.] 4
AO3 from enhanced NOX+CO (above) NOX+CO 1.22 0.63 0.55; 0.67] 0.86
Increase of CO, by 75 ppmv +75C02 1.06 0.73 0.67; 0.79] 1
Doubling of CO, 2xCO2 4.13 0.70 0.69; 0.72] 0.96
Quadrupling of CO, AxCO2 8.93 0.91 (0.90; 0.92] 1.25

EMAC global model simulations by Dietmuller (2011)

1. Varying strength of forcings

® 2xCO2 and 4xCO2 can be significantly
distinguished.

201 => Interplay of stratospheric temperature,
water vapour and cloud feedback is
responsible for variation in climate
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5 o R sum = No significant distinction of the feedback
-2.0 . . . .

S o sum for +75C0O2 simulation is possible due

S a0 to high interannual variability caused by

Iz Opla small forcings.
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=>» Restricted possibility to identify
feedback processes responsible for
climate sensitivity variation

2. Different type of forcings

3.0

"= NOX+CO and +75CQO2 show a significant
difference of the feedback sum consistent
with a reduced NOX+COQO efficacy.

=>» Various feedback changes contribute
to a distinctive NOX+CO efficacy;
enhanced water vapour feedback is

reversed by lapse rate, cloud and T, .,
feedbacks.
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“Partial Radiative Perturbation”-Method

Under the assumption of linearity and separability of radiative effects, each variable is
substituted, one by one, from a climate change simulation, whereas all other variables are
taken from a control simulation (forward calculation). By means of an offline radiation tool,
the net radiation flux changes at top of the atmosphere AR, are calculated.

AR
=> feedback parameter a = Z a, = z ad x=q,CAT,..
X X

AT

The sum of feedbacks counteracts the radiative forcing to restore the radiative equilibrium
at top of the atmosphere: RE 1
‘- Z TR, T T

X

Recommendations for successful feedback analysis

= |nterannual variability is very high, especially for small forcings
=» perturbation should be sufficiently large to extract the signal from high background
noise

= Combination of forward (FW) and backward (BW) calculations guarantees
=» reproduction of the near-zero radiation balance at top of the atmosphere
=>» separability of the feedbacks (no residuum)

(FW+BW) PRP
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Can feedback analysis be used to understand efficacy
differences between radiative forcings?

e Significant feedback changes may be identified in a carefully chosen analysis framework.
=>» All feedbacks are potential candidates to significantly modify the feedback balance and
to determine a distinctive efficacy of a given perturbation.

e |arger forcing gives a better signal to noise ratio and facilitates the analysis, but feedbacks
and climate sensitivity can also change significantly with increasing forcing.
=» Scaling forcings may be misleading when searching for physical reasons for efficacy
differences.
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