

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Performance Evaluation of Radiation Sensors for the Solar Energy Sector

L. Vuilleumier, M. Hauser, M. Dubuis, C. Félix and B. Calpini

Federal Office of Meteorology and Climatology, MeteoSwiss, Payerne

14th EMS Annual Meeting & 10th European Conference on Applied Climatology 06 – 10 October 2014, Prague, Czech Republic

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Performance Evaluation of Radiation Sensors for the Solar Energy Sector

Content

- Introduction
- Tested Instruments
- Reference Instruments
- Results, tested instrument performances
 i) General, ii) by situation, iii) dependencies
- Conclusion

Introduction

Goal: Performance evaluation of radiation sensors allowing determination of components (diffuse & direct) → used by solar energy sector

- 9 instruments tested
- Compared to reference instrument
 (BSRN)
 - Cloud cover: all-sky camera + longwave-based algorithm
- 15 months of measurement (two summers) 16/06/2012 → 15/09/2013
- Analysis on minute data
- Only solar zenith angle (SZA) $\leq 86^{\circ}$

Tested instruments

Two types of instruments:

Shading Pattern

	Instrument	Provider	# instr.	Principle		*/1
RSI	IRR: Rotating Shadowband Radiometer	Irradiance	2	Rotating shadowband + LICOR		
	RSI: Rotating Shadowband Irradiometer	CSP Services	2	Rotating shadowband + 2 LICORs (prototype)	L'	
	RSP: Rotating Shadowband Pyranometer	CSP Services	2	Rotating shadowband + LICOR		
Δ-Τ	SPN1: Sunshine Pyranometer	Δ-Τ	3	Multiple thermopiles sensors (7) + elaborate fix shading pattern		-

Tested instruments

(*) Provider offers post-treatment for these data

Tested instruments

Reference instruments (BSRN)

See: L. Vuilleumier, et al. (2014), Accuracy of ground surface broadband shortwave radiation monitoring. *Submitted to J. Geophys. Res.*

level of detail

Instrument performance evaluation

- a) Overall performance (general view, all conditions mixed)
- b) Understand causes for errors (investigate dependences)

Performances depend on conditions (solar zenith angle, clouds)

→ to be estimated globally AND for specific conditions.

In following slides General (all measurements included)

Intermediate (by categories)

Detailed (continuous dependence)

Global, all (daytime) data

 No particular difference between Rotating Shadowband Irradiometers and Shading Pattern at this level

Results:

Direct, all (non-zero) data

Direct Normal Irradiance

- Range ≈ [-50 125] W/m² (SPN1 up to 125 W/m²)
- IQR ≈ [-30 20] W/m² (RSI)
 IQR ≈ [20 60] W/m² (SPN1)
- Strong difference between RSI and SPN1

Categories (situations)

Two cases compared : "favorable" and "difficult"

- Low variability DNI Variability < 10 Wm⁻² min^{-1 (*)} (fulfilled for at least 15 min)
- High solar elevation SZA $\leq 60^{\circ}$

- High variability DNI Variability ≥ 10 Wm⁻² min^{-1 (*)}
- Low solar elevation ($60^\circ < SZA \le 86^\circ$)

(*) Different limit for $\cos(SZA) \le 0.2$

Results:

Global, categories ("favorable" & "difficult")

Error [Wm⁻²]:

Larger error for favorable cases (larger absolute value)

Ū

Results:

Global, categories ("favorable" & "difficult")

Relative error [%]: similar bias, but greater range and IQR for "difficult"

Smaller relative error for favorable cases

Direct, categories ("favorable" & "difficult")

Relative error [%]: large bias for SPN1, larger range and IQR for "difficult"

Caution: scale is doubled with respect to previous slide

Global, categories ("favorable" & "difficult")

Global Horizontal Irradiance:

- Favorable: ~[-7 +5] %
- Difficult: ~[-15 +10] %

	IQR Wm- ²			
	favorable	difficult		
IRR1	9.7	4.8		
IRR2	7.6	5.4		
RSI1	16.2	6.8		
RSI2	8.7	5.3		
RSP1	8.6	7		
RSP2	7.3	5.7		
Δ-Τ1	14.5	6.5		
Δ-Τ2	13.8	5.9		
Δ-Τ3	13.7	5.9		

Global, dependence on SZA

Investigating the source of errors:

Global, dependence on SZA

Global, dependence on SZA

RSIr2

Rotating shadowband Irradiometers:

- IQR larger for cloudy cases
- Median closer to zero for cloudy case
- Sunny case systematically underestimated
- Strong SZA dependence (spectral or cosine effect?)
- Similar behavior for both instruments of • each provider \rightarrow linked to manufacturer?

Characteristics common to all tested shadowband irradiometer \rightarrow linked to instrument concept ?

Results: J

Diffuse, dependence on **SZA**

Direct, dependence on SZA (from instrument) =

Zero DNI events excluded (pyrheliometer-determined)

Direct, dependence on SZA (recomputed)

Zero DNI events excluded (pyrheliometer-determined)

Global, Influence of cloud cover

Medians for different cloud coverages

Octas determined from APCADA (based on LW downward irradiance)

Dürr, B., Philipona, R., 2004. Automatic cloud amount detection by surface longwave downward radiation measurements, *Journal of Geophysical Research*, **109**, D05201

Global, Influence of cloud cover

- Rotating shadowband irradiometers median value improves progressively with cloud cover (but IQR becomes larger)
- Δ-T SPN1 little error dependence on clouds, (overcast – 7-8 octas – is different)

, Conclusion

Error global:	all daylight data:	[-30	+20] Wm ⁻²	([-10	+8] %)
	"difficult":	[-15	+10] Wm ⁻²	([-15	+10] %)
	"favorable":	[-50	+30] Wm ⁻²	([-7	+5] %)
Error direct:	all nonzero data: RSI only:	[-60 [-60	+125] Wm ⁻² +40] Wm ⁻²	([-10 ([-10	+22] %) +7] %)
	"difficult":	- [-55 -	+140] Wm ⁻²	([-15	+45] %)
	"favorable":	[-60	+90] Wm ⁻²	([-7	+10] %)
	RSI only:	[-60	+30] Wm ⁻²	([-7	+3] %)

RSIs show similar tendency for global:

- lower cloudiness → larger GHI dependence on SZA
- Δ -T SPN1 diffuse underestimated \rightarrow strong overestimation of direct
- Spectral/cosine effect not yet fully separated (working on it)

Thank you

Questions? / Comments!

Direct, dependence on SZA (from instrument) -

