

Large-eddy simulations of the internal boundary layer and wake flow within large wind farms

Björn Witha

G. Steinfeld, D. Heinemann

ForWind – Center for Wind Energy Research Research Group Energy Meteorology Carl von Ossietzky University Oldenburg, Germany

Contact: bjoern.witha@forwind.de

Motivation

Meerwind Süd/Ost wind farm – © Björn Witha

Motivation

Horns Rev wind farm – © Christian Steiness

The LES-Model PALM

A <u>**PA</u>**rallelized <u>Large-Eddy-Simulation-<u>M</u>odel for atmospheric and oceanic flows, developed since 1997 at IMUK, Leibniz University Hannover (Raasch & Schröter, 2001, Meteorol. Z., **10**, 363-372)</u></u>

palm.muk.uni-hannover.de

Input

Wind profile, temperature profile (stability), surface roughness, surface fluxes *or* nudging

Output

All relevant atmospheric variables: mean and turbulent fluctuations, turbulent fluxes

Computational parameters	Typical domain size	10 km x 5 km x 2 km
	Grid resolution	1 – 10 m
	Time step	0.1 – 1 s
	Grid point number	$10^7 - 10^{10}$
	Simulation time	up to 400,000 CPU hours

Wind turbine parameterization

Enhanced actuator disk model (with BEM)

$$F_{L_{b,r}} = \frac{1}{2} \rho C_{L} V_{rel}^{2} \frac{N_{b} c}{2 \pi r} \qquad F_{D_{b,r}} = \frac{1}{2} \rho C_{D} V_{rel}^{2} \frac{N_{b} c}{2 \pi r}$$

▼ considers rotation and local forces

almost identical results compared to actuator line model but much faster

(†)

BY

(CC)

Simulation of large finite and infinite wind farms

Infinite wind farm realized by periodic horizontal boundary conditions

Finite wind farm requires non-periodic boundary conditions in mean flow direction:

Precursor run with periodic boundary conditions to generate atmospheric turbulence

Main run initialized with results of the precursor run, **non-periodic boundary conditions and turbulence recycling**

(1) Comparison of finite and infinite wind farm simulations

Is it appropriate to simulate very large wind farms as infinite?

(2) Effect of atmospheric stability on wake flow in infinite wind farms

Is stability important or is it acceptable to neglect it?

(cc)

BY

Finite vs. infinite wind farms – wind speed (1)

EMS 2014 – Prague – 08.10.2014

BY

Finite vs. infinite wind farms – wind speed (1)

EMS 2014 – Prague – 08.10.2014

(cc)

BY

Finite vs. infinite wind farms – wind speed (1)

EMS 2014 – Prague – 08.10.2014

BY

(cc

(1) Finite vs. infinite wind farms – wind speed

EMS 2014 – Prague – 08.10.2014

BY

(cc)

(1) Finite vs. infinite wind farms – wind speed

EMS 2014 – Prague – 08.10.2014

BY

Finite vs. infinite wind farms – turbulence intensity (1)

BY

Finite vs. infinite wind farms – turbulence intensity (1)

EMS 2014 – Prague – 08.10.2014

BY

(cc)

(1) Finite vs. infinite wind farms - profiles

EMS 2014 – Prague – 08.10.2014

BY

(cc)

(1) Finite vs. infinite wind farms – power output

(2) Infinite wind farms – variation of stability

convective neutral stable

 (\mathbf{i})

BY

(cc

Björn Witha

EMS 2014 – Prague – 08.10.2014

Conclusions

- An internal wind farm boundary layer is developing in large wind farms growing up to several times the turbine height
- Both atmospheric stability and turbine spacing affect the internal wind farm boundary layer significantly (as do other parameters as wind speed and surface roughness)
- Infinite wind farms are easy to simulate but not representative of typical large wind farms – only of VERY large wind farms (e.g. 50 x 50 turbines)

Acknowledgements

The presented work has been funded by the German Federal Ministry for Economic Affairs and Energy in the project:

"Parallelrechner-Cluster für CFD- und WEA-Modellierung" (FKZ: 0325220)

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

The required computational resources have been partly provided by the HLRN (North German Supercomputing Alliance).

Large-eddy simulations of the internal boundary layer and wake flow within large wind farms

Björn Witha

G. Steinfeld, D. Heinemann

ForWind – Center for Wind Energy Research Research Group Energy Meteorology Carl von Ossietzky University Oldenburg, Germany

Contact: bjoern.witha@forwind.de

