Measuring rainfall from cellular communication networks for a 2.5-year period

Aart Overeem, Hidde Leijnse Remko Uijlenhoet

Royal Netherlands Meteorological Institute (KNMI) & Wageningen University (WU)

(identim/Shutterstock)

Outline

- Basic principle
- Data
- Method
- Results
- Applicability
- Conclusions

Basic principle - Estimate rain from attenuation

(Overeem et al., 2013)

- ▶ Rainfall attenuates electromagnetic signals transmitted from the antenna of one telephone tower to another.
- ▶ Pioneers: Messer et al. (2006) and Leijnse et al. (2007).

Basic principle - Received power for one link

(Overeem et al., 2011)

Radar rainfall intensity over link path \uparrow , min received power over 15 min \downarrow .

Basic principle

- Signal (P) loss with respect to dry weather.
- ► Compute path-average rainfall intensity over 15 min.

$$\langle R \rangle pprox a \cdot \left[rac{(P_{ref} - P)}{L}
ight]^b$$

Challenges (a.o.):

- Signal losses during dry weather.
- Hence, wet/dry classification = important (also for P_{ref}).
- ► Estimate mean rain rate from min and max power over 15 min.
- Attenuation due to wet antennas.

Data - Characteristics

Availability per link path:

- Resolution: 1 dB (majority) & 0.1 dB
- ▶ 12 days CAL $+ \sim$ 894 days VAL
- Minimum and maximum powers over 15 min (10-Hz sampling)
- ▶ January 2011 July 2013
- Gauge-adjusted radar data (CAL/VAL)
- ightharpoonup On average \sim 2000 link paths
- ▶ Netherlands: $\sim 3.5 \times 10^4 \text{ km}^2$

(Overeem et al., 2015)

Data - Network & population density

Spatial density:

Number of inhabitants per km² at January 1, 2013:

County-wide average: 0.21 km km²

© Centraal Bureau voor de Statistiek

Method

- ▶ A 15-min period is wet if nearby links show a mutual decrease in minimum received powers.
- Correction for signal fluctuations during dry weather.
 Reference signal level is determined. Apply filter to remove outliers.
- ► Calculate mean rainfall intensity from P_{min}^{C} and P_{max}^{C} .

$$A_{min} = P_{ref} - P_{max}^{C}$$

$$A_{max} = P_{ref} - P_{min}^{C}$$
(1)

$$\langle R \rangle = \alpha \cdot a \left(\frac{A_{max} - A_a}{L} \right)^b + (1 - \alpha) \cdot a \left(\frac{A_{min} - A_a}{L} \right)^b \tag{2}$$

$$\langle R \rangle = \alpha \langle R_{max} \rangle + (1 - \alpha) \langle R_{min} \rangle \tag{3}$$

Calibrate rainfall retrieval algorithm with daily radar rainfall depths.

$$A_{\rm a}=$$
 2.3 dB 12-day calibration data set $lpha=$ 0.335

$$b = 0.81 - 1.06 (13-40 \text{ GHz})$$

Results - 15-min rainfall maps

Links only (kriged map)

Results - Scatter density plots daily rainfall map

Links only: Automatic rain gauges:

- Entire 2.5-year period.
- Verification against gauge-adjusted radar rainfall maps.
- ► Less extremes captured by 30 rain gauges compared to 2000 microwave links.

Results - Scatter density plots daily rainfall map

Links only:

Automatic rain gauges:

- Summer months.
- ▶ Verification against gauge-adjusted radar rainfall maps.

Results - Scatter density plots 15-min rainfall map

Winter: Summer:

Verification against gauge-adjusted radar rainfall maps.

Results - Monthly rainfall maps Feb 2011 - Jul 2013

Links only (kriged map)

Results - Empirical exceedance probabilities daily rainfall

- ▶ Up to tens of mm quite good correspondence for links in winter with respect to radars + gauges. Large deviations for higher thresholds.
- ▶ Good correspondence for links in summer with respect to radars + gauges. Better than rain gauges, probably because of higher network density.

Applicability - Number of rain gauges, links, and radars

Applicability - World map of cellular telephone coverage

Conclusions

- Cellular communication network not originally designed to measure rainfall!
- Rainfall maps from microwave links often correspond quite well with radar-based maps.
- ▶ In summer: Quality comparable to maps from automatic rain gauges (1 gauge per 1000 km²).
- Potential for improving flood early warning, validation of satellite QPE, et cetera.
- Application to long time series for other networks and climates necessary.
- ▶ Improve understanding and algorithm (e.g. by experimental research; EMS2015-158).

We thank Ronald Kloeg and Ralph Koppelaar (T-Mobile NL). Research was partially funded by Technology Foundation STW.

- H. Leijnse, R. Uijlenhoet, J.N.M. Stricker, 2007. Rainfall measurement using radio links from cellular communication networks, WRR.
- H.A. Messer, A. Zinevich, P. Alpert, 2006. Environmental monitoring by wireless communication networks, Science.
- A. Overeem, H. Leijnse, R. Uijlenhoet, 2013. Country-wide rainfall maps from cellular communication networks, PNAS.
- A. Overeem, H. Leijnse, R. Uijlenhoet, 2015. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network, AMTD.

Sensitivity analysis coefficients A_a and α

- Blue dot: values for 12-day data set. Red dot: optimal value for entire period.
- Performance rainfall retrieval algorithm relatively insensitive to chosen values for α and A_a .