Use of post processing techniques and satellite irradiance data to forecast short wave radiation

Enrico Maggioni (1), Alessandro Perotto (1), Francesco Spada (1)
Cristina Cornaro (2), Marco Pierro (2)

1) Ideam s.r.l – via Frova 34, 20092 Cinisello Balsamo (MI), Italy. e-mail: enrico.maggioni@ideamweb.com
2) Department of Enterprise Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy. e-mail: marco.pierro@gmail.com
Model setup and MOS techniques

<table>
<thead>
<tr>
<th>Regional model</th>
<th>WRF ARW V3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial and contour data</td>
<td>GFS 0.25°</td>
</tr>
<tr>
<td>Forecast interval analyzed</td>
<td>+12/+36h</td>
</tr>
<tr>
<td>Radiation scheme</td>
<td>RRTMG (short and long wave)</td>
</tr>
<tr>
<td>Model vertical resolution</td>
<td>26 levels exponentially spaced</td>
</tr>
<tr>
<td>Model horizontal resolution</td>
<td>12km</td>
</tr>
<tr>
<td>Period analyzed</td>
<td>2013-2014</td>
</tr>
</tbody>
</table>
Solar radiation forecast – known problems

- Tendency to overestimate radiation in cloudy situation
- Evidence of the “on/off switch”
- Difficulty in forecasting rapid changes in cloud cover
- Clear-sky radiation does not perfectly represent site-specific measurements

Model output statistics (MOS):

use of ground measurements
to remove bias and learnable errors from the NWP data
 - Physical based algorithm (MOSRH)
 - Pure Statistical based algorithm
 - Stochastic learning techniques (ANN)
MOSRH (*): two step post-processing

Pseudo cloud cover (PCC): integral of relative humidity of a vertical column of atmosphere

- Only levels with RH higher than a threshold value (60%) are considered
- Relative humidity is weighted accordingly to the humidity value itself
- Normalization to obtain a value between 0 and 1

$$\text{PCC} = \frac{\sum_{j} RH_j \cdot w_j}{\sum_{j} w_j}$$

Dampening effect of Pseudo cloud
- Clear sky radiation from the model (GHI cs) is dampened by a value proportional to the PCC
- The coefficients are obtained through a multilinear regression with the observation data

$$GHI^f = d \cdot GHI_{cs} \cdot (1 - a \cdot PCC^b) + c$$

Mean improvement values of MOSRH algorithm on raw model forecast: 15-25 %

MOSRH problems

1) Presence of a consistent radiation measurement series (at least 1-2 years)
2) Pre-processing of data measurements: every series must be treated independently
3) High quality measurements

Example: comparison between Rome and Bolzano coefficients

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolzano</td>
<td>PCC<0.05</td>
<td>0</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>0.05<PCC<0.7</td>
<td>0.36</td>
<td>0.88</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PCC>0.7</td>
<td>0.68</td>
<td>2.33</td>
<td>0</td>
</tr>
<tr>
<td>Roma</td>
<td>PCC<0.05</td>
<td>0</td>
<td>1</td>
<td>-12.5</td>
</tr>
<tr>
<td></td>
<td>0.05<PCC<0.7</td>
<td>0.69</td>
<td>1.32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PCC>0.7</td>
<td>0.91</td>
<td>2.13</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Use of satellite data**

1) Satellite data are available for several years for the entire area covered by Meteosat
2) A unique input data format for pre-processing
Meteosat GHI data

Known problems:

- Low accuracy compared to a high quality ground pyranometer
- Lower time resolution
- Data are represented as area integrated values and no as point values.
- Quality depends on weather, solar zenith angle and geographical area.

- Meteosat 9 (MSG2)
- Osi-Saf algorithm used to derive SSI (Surface Solar Irradiance) and DLI (Downward longwave Irradiance)
- A complete scan every 30 minutes (*)

Test sites

- Outdoor test facility of Airport Bolzano Dolomiti (position ca. 46.46N, 11.33E, alt 262m)
- Kipp&Zonen CMP11 secondary standard pyranometer

- Ester outdoor Laboratory at the University of Rome “Tor Vergata” (position ca. 41.85N, 12.62E, alt 30m)
- Kipp&Zonen CMP21 secondary standard pyranometer
The values are coherent with “Meteosat and Goes-R Radiative Fluxes validation report”
Satellite data: 2 different methodologies

1) **MOSRH SATPT**: MOSRH coefficients from a regression with the nearest point from the sat grid. Different set of coefficients for every point of the Italian domain.

2) **MOSRH SATMC**: MOSRH coefficients are calculated combining sat grid points in areas and altitudinal ranges. Points which behave similarly are treated with the same set of coefficient.

6 areas from the Italian energy market

4 different altitudinal ranges

24 different sets of coefficients

Courtesy of:
http://dataenergia.altervista.org/
Rome statistics

Hourly comparison: forecast vs ground based measurements

Solar radiation comparison - Rome

RMSE
- MOSRH_SATMC
- MOSRH_SATPT
- MOSRH
- RawModel

Mae
- MOSRH_SATMC
- MOSRH_SATPT
- MOSRH
- RawModel

Bias
- MOSRH_SATMC
- MOSRH_SATPT
- MOSRH
- RawModel

Error (W/m²)

 Improvement from raw forecast - Rome

CORR(%)
- MOSRH_SATMC 87.0
- MOSRH_SATPT 87.3
- MOSRH 87.3
Bolzano statistics

Hourly comparison: forecast vs ground based measurements

Solar radiation comparison - Bolzano

Error (W/m²)

MOSRH_SATMC
MOSRH_SATPT
MOSRH
RawModel

Bias

MSE

Mae

CORR(%)
MOSRH_SATMC 88.1
MOSRH_SATPT 88.3
MOSRH 88.3

Improvement from raw forecast - Bolzano

Mae
Rmse

Improvement (%)
Daily comparison

Rome

<table>
<thead>
<tr>
<th></th>
<th>RAW MODEL</th>
<th>MOSRH</th>
<th>MOSRH_SATPT</th>
<th>MOSRH_SATMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE (W/m^2)</td>
<td>103.8</td>
<td>57.9</td>
<td>57.7</td>
<td>61.4</td>
</tr>
<tr>
<td>NMAE (%)</td>
<td>21.3</td>
<td>11.9</td>
<td>11.8</td>
<td>12.2</td>
</tr>
<tr>
<td>CORR (%)</td>
<td>93.4</td>
<td>95.0</td>
<td>95.0</td>
<td>94.8</td>
</tr>
</tbody>
</table>

Bolzano

<table>
<thead>
<tr>
<th></th>
<th>RAW MODEL</th>
<th>MOSRH</th>
<th>MOSRH_SATPT</th>
<th>MOSRH_SATMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE (W/m^2)</td>
<td>126.4</td>
<td>68.3</td>
<td>68.4</td>
<td>80.5</td>
</tr>
<tr>
<td>NMAE (%)</td>
<td>29.3</td>
<td>15.8</td>
<td>15.8</td>
<td>18.7</td>
</tr>
<tr>
<td>CORR (%)</td>
<td>92.6</td>
<td>93.8</td>
<td>93.7</td>
<td>93.4</td>
</tr>
</tbody>
</table>
Conclusions

- MOSRH_SATPT and MOSRH_SATMC quality is comparable (or better) to MOSRH quality
- Lower quality of satellite data is balanced by a smoother data (preferable for regression)
- High number of regression data improves the coefficients quality (for MOSRH_SATMC)

Use of satellite data in finding regression coefficients can be a valid alternative to the use of ground measurement data.

Future work:
- Improvement of MOSRH_SATMC areas and altitudinal ranges
- Improvement of MOSRH algorithm
Thank you!