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Introduction an ofivation

Large shares of PV power can compromise the stability of the electrical grid on a regional level
with the introduction into the electric load of a stochastic variability dependent on
meteorological conditions.
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Summer 2015 - Alperia DSO starts collaborating with EURAC to develop a new upscaling
method based on data-driven models for regional PV power estimation and mid-term forecast.
IDEAM provides NWP model and satellite derived irradiance data.

Estimation allows real time PV distributed power supervision, net load prediction, transmission
scheduling and energy trading.

PV Power forecasts improve the capability of residual load tracking and net load supervision.
Prediction intervals can be used to reduce uncertainty in the electric demand so that lower
energy reserves are needed
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1975 plants distributed over complex
terrain.

The K-mean algorithm is used to
generate a statistical sample
representative of the regional solar
irradiance.

6 cluster centroids have been
selected to represent the Region.

The advantage is twofold:

- economize computation avoiding single
PV plant generation estimation and forecast

- perform spatial smoothing to reduce errors.




Source: METEOSAT-9 (MSG3)
OSI SAF SSI algorithm

Centered at 0 deg longitude
Window: 60W to 60E, 60N to 60S
Horizontal resolution: 0.05
Temporal resolution= 1 hour

Available near real time (~ 2 hours
after measurement)
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The model used is WRF-ARW ]
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Short wave radiation Scheme: RRTM

- describes sub grid cloud variability through a Monte-Carlo independent column
approximation
- distinguishes near-infrared, visible and UV wavelengths.

Concentration and chemical composition derive from parametric values taken from pre-built
tables, NO WRF-CHEM is run
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nsemble of AN

RHNN provides the day-ahead forecast of the clear sky performance index (Pierro et al. 2016.
Multi-Model Ensemble for day ahead prediction of photovaltaic power generation, Solar Energy

134 132-146)
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ANN architecture: MLPNN with two layers is adopted. 500 ANNs are generated. Then a qualified
ensemble is selected (around 300 ANNSs), choosing all the ANN with the MSE lower than the
average MSE of the 500 networks. The forecast is obtained by the average on the ensemble

outputs

After numerous case studies (Pierro et al. 2016, Deterministic and stochastic approaches
ahead solar power forecasting) as input for the ANN the WRF 2 m. air temperature, a

for day-

combination of relative humidity levels, and optionally the clear sky model global horizontal

irradiance (GHI) are used.
No forecast of GHI reaching the surface is needed.



Very few input informations are needed so it can be easily adopted by DSO's.
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The power estimation model achieves, using satellite derived irradiance, an RSME of 3% of
the installed capacity and a MAE of 2%.
GHI ground measurements lead to an RMSE of 2% and a MAE of 1.5%
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RHNN applied to regional day ahead forecast

Several approaches were tested.

The most accurate forecasts are obtained by applying a principal component analysis (PCA) to
the WRF forecast of relative humidity and subsequently running an ANN, from now on called
PCARHNN. cup
Input for ANN: T ,,
1. SunEL [°](Theoretical Sun Elevation) e e o i) DD D0 et frca)
2. SUnAZ [°](Theoretical Sun Azimuth) NWP R ofvertialves (Clster 1) : "
3. NWP Tair [C] ;

4. NWP GHlcs [W/m2] e G
5-9. [Z1,..., Z5]=PCA(76 RH level ) ... (19 RH levels for each of the 6 clusters)

PCA reduces input dimensionality of the RH levels from 76 to 5
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PCARHNN is also the most straightforward and computationally less expensive of the
methodologies tested
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2014 observational data was used for training the NN. 2015 for test and calculation of the
accuracy metrics.

Errors are normalized in respect to the installed capacity.

In the figure the results for a simple persistence model are presented.
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The skill score is used because it is not site and year dependant. The RMSE Skill Score is
defined as follows (MAE SS is similar):

RMSE,,,— RMSE,,,
SS=100( 15\/1515 )

pers

Where RMSEperS is the RMSE for the simple persistence model.

Better results are obtained compared to single site and single cluster centroids forecast
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Prediction Intervals

Prediction intervals can be calculated forecasting the standard deviation of the residuals (o for )
under the hypothesis that the residuals are normally distributed with zero expected value
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Prediction Interval Evaluation:
Pobs= 95% at Confidence Level=95%

Pobs= 81.7% at Confidence Level=75%
Pobs= 59.3% at Confidence Level=50%
Pobs= 31.6% at Confidence Level=25%

Prediction intervals width evaluation

Uncertainity: prec

iction In

ervals

STDfor/<Xobs>=26.15% with respect to STDobs/<Xobs>= =90.45%

STDfor/STDobs=28.9%

With the transition from overcast to clear sky days the width of prediction intervals decreases
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traday Forec

The intra-day forecast model makes use of past power estimation and 1 day forecast obtained

by past satellite irradiance and 1 day ahead NWP data.
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Estimation of the past 4 hours and the 1 day ahead forecast (PCARHNN) for the following 4
hours are used as input for the specific ANN
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The clear sky persistence model performs better than simple persistence, it is derived from the
clear sky index.

Satellite data can be used to correct the forecast based on NWP up to a 4 hour horizon.

For longer horizons the intra-day forecast has a lower accuracy compared to the 1 day forecast
(PCARHNN).
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onclusions

The power estimation and forecast on a regional scale provide more accuracy than the estimation

and forecast of a single site or of each cluster. An ensemble smoothing is obtained by the
upscaling performed

Let's review the results:

« the accuracy of the power estimation model achieved using satellite derived irradiance is

around 3% of installed capacity thus the upscaling method could be adopted for real time
power supervision.

« The intra-day forecast obtains an RMSE between 5% and 7% of installed capacity.
 The day-ahead forecast achieves an RMSE between 7% an 8%.

These values can be considered “state of the art” for a regional site and forecast.

In October 2016 forecast and estimation will become operational




Thank you

for your attention
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