Meteorological stations-based European climatological database for the identification of heat-waves

Marco Morabito - Alfonso Crisci - Gianni Messeri Institute of Biometeorology - National Research Council

Alessandro Messeri - Simone Orlandini Centre of Bioclimatology – University of Florence

> Giampiero Maracchi Accademia dei Georgofili - Florence

Consiglio Nazionale delle Ricerche

CARISMAND

Culture And RISk management in Man-made And Natural Disasters

CARISMAND ulture And RISk management in an-made And Natural Disasters

Introduction

This study was carried out in the field of the CARISMAND Project: Culture And RISkmanagement in Man-made And Natural Disasters

Consiglio Nazionale delle Ricerche

Introduction

Heat-waves (HWs) are one of the "natural" hazard with the greatest impact worldwide in terms of mortality and economic losses The impact of HWs on mortality is particularly high in Europe, accounting for over 80% of the total heat-wave-related deaths worldwide

Nevertheless, HWs rarely receive adequate attention as a public-health problem, maybe because this meteorological hazard lacks the spectacular and sudden violence of other extreme events.

HEAT: THE SILENT KILLER!

Culture And RISk management in Man-made And Natural Disasters

Introduction

For these reasons, more and more detailed and updated analyses on HW trends and on the heat-risk assessment for the most vulnerable people (i.e. the oldest and youngest population) represent a priority that can not be neglected.

What is the best heat-wave definition?

There is no universally accepted heat-wave definition

Based on IPCC report (IPCC, 2012):

Heat-waves are period of **abnormally hot** weather.

Based on WMO description (WMO-No. 1142, 2015):

Heat-waves are understood to be periods of **unusually hot and dry or hot and humid** weather with a detailed **onset and cessation**, a **duration of at least two-three days**, usually with a discernible **impact on human and natural systems**.

There is agreement that HWs are relative to a location's climate and its classification should be geographically-related:

the same meteorological conditions can constitute a HW in one place but not in another

Review article

Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis

The most appropriate HW definition should be based on the sector (i.e. health, infrastructure, agriculture, ...) potentially affected by HWs

CARISMAND ulture And RISk management in lan-made And Natural Disasters

Zhiwei Xu^a, Gerard FitzGerald^a, Yuming Guo^b, Bin Jalaludin^{c,d}, Shilu Tong^{a,*}

The HW definition used in this study

At European level, a useful contribution to define a HW in a human health context was provided by the **EU-funded project EuroHEAT** (*Improving Public Health Responses to extreme weather/heat-waves*) which also aimed to develop a standardized definition of a HW event

D'<mark>Ippol</mark>iti et al., 2010

We used an improved version of the EuroHEAT HW definition

Heat wave (HW) definition

- Periods of at least 2 days with T_{appmax} exceeding the 90th percentile centered on a 31-day window or
- Periods of at least 2 days in which T_{min} exceeds the 90th percentile & T_{appmax} exceeds the median centered on a 31-day window

HW characteristics

Duration

- Short HW: duration < the median
- Long HW: duration \geq the median

Intensity

- Low intensity HW: T_{appmax} < 95th perc
- High intensity HW: $T_{appmax} \ge 95^{th}$ perc *Timing*
- The first HW of each summer
- HWs that occurred between 1 and 3 days after the previous one;
- HWs that occurred 3 or more days after the previous one

Iture And RISk management in In-made And Natural Disasters

Study description

A HW hazard index (HWHI) accounting for the duration, intensity and timing of HWs has been developed.

Trends and spatial distributions of the HWHI were investigated on a long historical time-series (36-year period) of daily ground meteorological data collected over the densely populated capitals of the 28-EU Member States.

Comparisons of HW characteristics between two 18-year periods were carried out: 1980-1997 vs. 1998-2015

CAKISMAND Culture And RISk management in Ian-made And Natural Disasters

Materials and Methods

Daily meteorological data were collected over the capitals of the 28-EU Member States during a 36-year period (1980–2015) by using the Global Surface Summary of the Day (GSOD) dataset produced by the National Climatic Data Center (NCDC) (<u>ftp://ftp.ncdc.noaa.gov/pub/data/gsod/</u>).

HWs were defined during the warmest period of the year (May-September, 1980-2015) by using the improved version of the EuroHEAT HW definition previously described.

Statistical analyses

- Descriptive statistic (boxplot graphs) of the city-specific Heat-Wave Hazard Index (HWHI)
- The Trend-Package (Ver. 0.2.0) of the open source R statistical software *"Non-Parametric Trend Tests and Change-Point Detection"* (<u>https://cran.r-project.org/web/packages/trend/index.html</u>) (Pohlert, 2016) was used to investigate the Heat-Wave Hazard Index (HWHI) trend
 - over the period 1980-2015:
 - Mann-Kendall Trend Test (Kendall coefficients of correlation and p-value)
 - Sen's slope
- The % change of the HW characteristics (HW_D , HW_L and HW_I) and the variation of median days of HW_T between two 36-year periods (1980-1997 vs 1998-2015) were assessed:
 - the Kruskal-Wallis Test (Kruskal and Wallis, 1952) was used to determine if there were statistically significant HW characteristics differences between the two periods

Results – Boxplot of HWHI

Results – Trend analyses (1980-2015)

Kendall coefficients of correlation

Significant test (p-value)

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Results – HWHI scenario by 2020

Culture And RISk management in Man-made And Natural Disasters 11th European Conference on Applied Climatology (ECAC) Trieste - Italy - 12–16 September 2016

ISTITUTO DI BIOMETEOROLOGI

Consiglio Nazionale delle Ricerche

Northern European Countries/Cities			1980-	<mark>1997</mark>			1998-	-2015		% Change (HW _D , HW _L and HW _I) Variation in median days (HW _T)				
			Med	lian			Meo	lian		Significant change (red if p<0.05)				
		HW _D	HWL	$\mathbf{H}\mathbf{W}_{\mathbf{I}}$	HW _T	HW _D	HWL	$\mathbf{HW}_{\mathbf{I}}$	HW _T	HW _D	HWL	HWI	HW _T	
Ireland	Dublin	14.0	2.0	1.0	143.5	12.0	2.0	1.0	113.5	-14%	0%	0%	-30.0	
United Kingdom	London	13.0	2.0	1.0	70.0	17.0	3.0	1.0	118.5	31%	50%	0%	+48.5	
Denmark	Copenhagen	12.5	2.0	1.0	73.0	18.5	3.0	1.0	74.0	48%	50%	0%	+1.0	
Sweden	Stockholm	13.0	2.0	1.0	137.5	15.0	3.0	1.0	105.5	15%	50%	0%	-32.0	
Estonia	Tallinn	12.0	2.0	1.0	153.0	18.0	3.0	2.0	68.5	50%	50%	100%	-84.5	
Finland	Helsinki	11.5	2.5	1.5	76.0	19.5	3.5	1.0	152.0	70%	40%	-33%	+76.0	
Latvia	Riga	11.5	2.0	1.0	134.5	20.5	2.0	2.0	85.0	78%	0%	100%	-49.5	
Lithuania	Vilnius	13.0	2.0	1.0	147.5	17.5	3.0	2.0	63.5	35%	50%	100%	-84.0	

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Southern European Countries/Cities			1980-	1997			1998-	-2015		% Change (HW _D , HW _L and HW _I) Variation in median days (HW _T)				
			Med	lian			Meo	lian		Significant change (red if p<0.05)				
		HW _D	HWL	$\mathbf{HW}_{\mathbf{I}}$	HW _T	HW _D	HWL	$\mathbf{HW}_{\mathbf{I}}$	HW _T	HW _D	HWL	HWI	HW _T	
Portugal	Lisbon	15.0	3.0	2.0	77.0	13.5	2.5	1.5	70.0	-10%	-17%	-25%	-7.0	
Spain	Madrid	16.5	3.0	2.0	92.0	12.0	2.0	0.0	153.0	-27%	-33%	-100%	+61.0	
Italy	Rome	7.5	1.0	1.0	149.0	20.0	2.0	2.0	84.0	167%	100%	100%	-65.0	
Malta	La Valletta	11.5	2.0	1.0	153.0	16.5	2.5	1.0	153.0	44%	25%	0%	0.0	
Slovenia	Ljubljana	11.5	2.0	0.5	153.0	19.5	4.0	2.0	70.5	70%	100%	300%	-82.5	
Croatia	Zagreb	8.0	1.0	1.0	153.0	27.5	4.0	2.5	56.5	244%	300%	150%	-96.5	
Greece	Athens	6.5	1.0	0.5	153.0	27.0	4.0	2.0	89.0	315%	300%	300%	-64.0	
Cyprus	Nicosia	6.0	0.5	1.0	153.0	23.5	4.0	1.0	100.5	292%	700%	0%	-52.5	

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Western European Countries/Cities			1980-	1997			1998-	-2015		% Change (HW _D , HW _L and HW _I) Variation in median days (HW _T)				
			Med	lian			Mee	lian		Significant change (red if p<0.05)				
		HW _D	HWL	$\mathbf{HW}_{\mathbf{I}}$	HW _T	HW _D	HWL	$\mathbf{H}\mathbf{W}_{\mathbf{I}}$	HW _T	HW _D	HWL	HWI	HW _T	
France	Paris	15.0	2.5	1.0	130.0	14.5	2.5	2.0	<mark>93</mark> .0	-3%	0%	100%	-37.0	
Belgium	Brussels	12.5	3.0	1.0	114.0	17.5	3.5	1.0	123.5	40%	17%	0%	+9.5	
Netherlands	Amsterdam	11.5	3.0	2.0	111.0	19.0	3.0	1.0	123.5	65%	0%	-50%	+12.5	
Luxembourg	Luxembourg	11.5	1.5	1.5	102.0	18.0	3.5	2.5	61.5	57%	133%	67%	<mark>-40</mark> .5	
Germany	Berlin	14.5	2.0	1.0	153.0	21.0	4.0	3.0	46.0	45%	100%	200%	-107	
Austria	Vienna	11.5	2.0	0.5	153.0	23.0	4.0	2.5	72.5	100%	100%	400%	-80.5	

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Eastern European Countries/Cities			1980-	1997			1998-	-2015		% Change $(HW_D, HW_L \text{ and } HW_I)$ Variation in median days (HW_T)				
			Med	lian			Meo	lian		Significant change (red if p<0.05)				
		HW _D	HWL	$\mathbf{HW}_{\mathbf{I}}$	HW _T	HW _D	HWL	$\mathbf{H}\mathbf{W}_{\mathbf{I}}$	HW _T	HW _D	HWL	HWI	HW _T	
Czech Republic	Prague	11.5	2.0	1.0	133.5	<mark>2</mark> 0.5	4.0	2.0	53.5	78%	100%	100%	-80.0	
Slovakia	Bratislava	14.0	2.5	1.0	141.0	21.0	4.0	1.5	98.5	50%	60%	<mark>50</mark> %	-42.5	
Hungary	Budapest	13.0	2.0	1.0	150.0	22.5	4.0	3.0	54.5	73%	100%	200%	-95.5	
Poland	Warsaw	13.0	2.0	1.0	141.5	22.0	4.0	2.0	63.0	69%	100%	100%	-78.5	
Bulgaria	Sofia	10.0	2.0	1.0	153.0	24.5	4.5	2.5	65.5	145%	125%	150%	-87.5	
Romania	Bucharest	11.0	1.5	1.0	153.0	20.0	3.0	2.0	115.0	82%	100%	100%	-38.0	

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Results HWHI 1980-1997 vs. HWHI 1998-2015

Culture And RISk management in

Results HWHI % change in 1998-2015

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Climatological interpretation of the HWHI-geographical shift over Europe

Climatological interpretation of the HWHI-geographical shift over Europe

Sep: 1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2

CARISMAND Culture And RISk management in Man-made And Natural Disasters

Climatological interpretation of the HWHI-geographical shift (from west to east) over Europe

Conclusions

- Most of the city showed a significant increase in the HWHI, especially in the capitals of EU central-eastern Member States
- The % change of the HWHI expected in 2020 was the highest in the eastern cities (from 20 to 30% of HWHI increase)
- Most of cities showed HWHI increases going from 1980-1997 to 1998-2015:
 - the highest increases (> 200%) were observed in the capitals of Greece, Cyprus and Croatia;
 - the lowest increases (0-50%) were observed in several western and northern capitals;
 - HWHI decreases were observed in capitals of the western EU Member States (Spain and Portugal) and several Northern countries (Netherlands and Finland)

Two completely different synoptic sytuations were observed in the periods 1980-1997 and 1998-2015

These results are especially important for local authorities, urban planners and generally policy-makers, which should work to allocate funds to support environmental modifications to mitigate urban microclimate and pedestrian thermal comfort conditions.

Iture And RISk management in n-made And Natural Disasters

THANK YOU FOR THE ATTENTION !!!

For more information: Marco Morabito m.morabito@ibimet.cnr.it

Consiglio Nazionale delle Ricerche

CARISMAND

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653748.