

ESTIMATING THE AMOUNT OF CLOUD COVER (IN OKTAS) USING PHOTOVOLTAICS

Stavros Stylianou¹, Rogiros Tapakis¹², Alexandros G. Charalambides^{1*}

¹Department of Environmental Science and Technology, Cyprus University of Technology ²Cyprus Transmission System Operator

OUTLINE

- Introduction
- Methodology
- Results
- Conclusions
- Next Steps

INTRODUCTION

3/15

PROBLEM

Wind Energy

PROBLEM

Why is variability a problem?

(Renewable Energy 62 (2014) 459-467)

METHODOLOGY

- Each okta represents one eighth of the sky covered by cloud.
- Ranging from 0 oktas (completely clear sky) through to 8 oktas (completely overcast).

METHODOLOGY

• Six different scenarios carried out using 30, 50, 75, 100, 500 and 1000 randomly distributed PV systems in an area of 10km x 10km.

METHODOLOGY

- 350 different fractal-based cloud shadows (50 per okta) were produced.
- Utilize geographic information systems (GIS) geoprocessing to calculate cloud coverage.

RESULTS

OKTA	STATIONS - calculated coverage (%) per OKTA					
	30	50	75	100	500	1000
	Stations	stations	Stations	stations	Stations	Stations
0	100%	100%	100%	100%	100%	100%
1	60%	80%	84%	90%	100%	98%
2	48%	76%	76%	84%	94%	86%
3	66%	62%	72%	74%	86%	80%
4	52%	50%	60%	74%	86%	92%
5	44%	64%	66%	68%	88%	90%
6	36%	66%	80%	76%	98%	98%
7	68%	78%	78%	92%	98%	98%
8	100%	100%	100%	100%	100%	100%
Mean	64%	75%	80%	84%	94%	94%
Standard	0.2294	0.1688	0.1366	0.1189	0.0614	0.0705
Deviation						

RESULTS

CONCLUSIONS

- There is a positive correlation between the number of stations used and the accuracy of the estimation.
- With 30 PV stations an average accuracy of only 64% was produced. The accuracy increased to 94% with 1000 PV stations.
- PV data can provide interesting meteorological information.
- The developed model can provide a solid cloud cover estimation.

NEXT STEPS

- To run the model with real data from PV.
- To validate the results using meteorological data and sky cameras.
- Analyze the results with a meteorology specialist.
- Further develop to estimate cloud movement.

QUESTIONS?

