

82818284

Very short term wind power forecasting using shore-based scanning lidar observations over the Danish North Sea

 $P = \frac{1}{2} \rho A \nu^3 C_p$

EMS 2016 - Trieste, Italy

15 September, 2016 (11AM @ Saturnia)

Elliot I. Simon (ellsim@dtu.dk) Michael Courtney, Guillaume Lea, Nikola Vasiljevic

DEPARTMENT OF Wind Energy (formerly Risø)

Motivation

- Why are very short term wind power forecasts necessary?
 - Grid balancing, regulating market operation (e.g. EPEX 15 minute contracts for intermittent renewables)
 - Windfarm control applications (curtailment, active control)
 - Predicting gusts and ramp events (ex. load control)
 - Improve scheduling/dispatching of power plants for large scale integration
- Balancing costs amount to 8.3 EUR/MWh of generated wind! (Bruninx, 2014)

Standard techniques

- Current approach for this timescale is mainly statistical (from SCADA) and the persistence method
- NWP tools are using for longer forecast horizons, then finally climatology is used

(Haupt, 2016)

Lidar

- Lidar technology can provide us with inflow wind field measurements
 - Not only give us measurement data, but also temporal and spatial characteristics about how the wind field is behaving
 - Scanning lidar such as the long range WindScanner can scan up to 7km along complex trajectories

Example of PPI scan from RUNE

5 DTU Wind Energy (Risø), Technical University of Denmark

Illustration of concept 2

6

Machine learning

- Inputs (features) are then fed into model, and a best fit result (label) is given
- Here we implement the DecisionTreeRegressor class from scikit-learn
- Our model does NOT learn during validation (persistence not incorporated)

Decision tree example

RUNE experiment

- Reducing Uncertainty of Near-shore wind resource Estimates using onshore scanning lidar technology combined with ocean and satellite information
 - Perform near-shore WRA using onshore instruments
 - Compare & improve mesoscale model performance in coastal areas

RUNE experimental setup

SS: 3 heights (50,100,150m ASL @ 5km) DD: 3 heights (50,100,150m ASL)

3 scanning lidars

4 profiling lidars

1 floating lidar buoy

1 wave buoy

TerraSAR-X, Sentinel-1 satellite images

Floors et.al: Report on RUNE's coastal experiment and first inter-comparisons between measurements systems

Vertical Slice of Scan (0.844 deg elevation)

Data filtering

- Scanning lidar
 - CNR < -26.5 dB (remove)</p>
 - Missing measurements along LOS (remove entire line)
 - Low availability in 10 minute average (only 1 point, remove)
- Profiling lidar
 - Availability < 90% (remove)
 - Maximum CNR > 10 dB (remove)
 - Low CNR filter already implemented during operation
- Results
 - Wind direction outside range 225-315 degrees (remove)

Sector scan dataset

- Overview:
 - 2015-11-26-1530 to 2016-02-17-0750
 - 4203 10 minute periods with 5km range and >1 sample per 10min
 - 700 hours, or 29 days of data
 - 156 range gates per elevation height
 - 0.271, **0.844** and 1.417 degrees
 - 100-8150m horizontal distance
 - Middle elevation = 100m height @ 5km

Case study:

- Input: SS wind speeds and directions along 4km-5km horizontal distance
- Training data: 2015-12-04-0940 to 2015-12-18-0510 (14 days)

• Validation period: 2015-12-21-0950 to 2015-12-24-1620 (3.6 days)

Case 1 Results:

- n=194 x 10 min (32h)
- 27% of points filtered/missing

DTU = 1.005

Regression coefficient = 1.005 $R^2 = 0.9896$ Standard error = 0.007 m/sRMSE = 1.628 m/sRMCE = 1.790 m/sMAE = 1.406 m/sTrain Data Spd66 Min. : 1.08 1st Ou.: 8.85 Median :11.76 :12.18 Mean 3rd Qu.:14.91 Max. :24.03 **Prediction Data**

PredSpd	RealSpd	
Min. :10.13	Min. :10.33	
1st Qu.:12.63	1st Qu.:13.84	
Median :14.93	Median :15.51	
Mean :15.42	Mean :15.73	
3rd Qu.:18.13	3rd Qu.:17.18	
Max. :22.23	Max. :22.98	

Time series result, wind speed:

Persistence comparison

- n = 194 x 10 min (32h)
- Regression coefficient = 1.004
- $R^2 = 0.9979$
- Standard error = 0.004 m/s
- RMSE = 1.126 m/s
- RMCE = 1.907 m/s
- MAE = 0.649 m/s

Conclusion

- Lessons learned
 - Persistence wins for now for normal operation (MAE & RMSE)
 - Added value may lie within the extremes (RMCE)
 - Sampling rate from RUNE is not fast enough (n=4 per 10 min)
 - Elevated scanning including height variation not ideal
 - There are other processes (e.g. air-sea interaction, orography, sea breeze) which modify advection near the coast
- Future work
 - Østerild balcony data remedies many of these issues
 - Incorporate ongoing measurements during validation
 - Recalibration of model in real time
 - Probabilistic output
 - Wind direction output
- Grazie :)
 - Also check out Tobias Ahsbahs Thursday @ 18:00 ASI4, Vulcania

EL ENERGINET DK