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Motivation
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* Why are very short term wind power forecasts necessary?

— Grid balancing, regulating market operation (e.g. EPEX 15 minute
contracts for intermittent renewables)

— Windfarm control applications (curtailment, active control)
— Predicting gusts and ramp events (ex. load control)

— Improve scheduling/dispatching of power
plants for large scale integration
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* Balancing costs amount to 8.3 EUR/MWh
of generated wind! (Bruninx, 2014)

Jutland - Norway
Imports: 1.525 MW

251 g/kWh
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Imports: 541 MW

Bornholm - Sweden

Imports: 23 MW

The Great Belt
> 448 MW

Zealand - Germany
Jutland - Germany

Exports: 434 MW o | Imports: 212 MW

| Last updated 8. september 2016 17:10
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Standard techniques

* Current approach for this timescale is mainly statistical (from SCADA) and

the persistence method

* NWP tools are using for longer forecast horizons, then finally climatology

is used
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Lidar

* Lidar technology can provide us with inflow wind field measurements

— Not only give us measurement data, but also temporal and spatial
characteristics about how the wind field is behaving

— Scanning lidar such as the long range WindScanner can scan up to
7km along complex trajectories

Example of PPl scan from RUNE
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lllustration of concept 1
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lllustration of concept 2
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Machine learning

* Uses training data to build predictive model (e.g. decision tree, classifier)

* Inputs (features) are then fed into model, and a best fit result (label) is
given

* Here we implement the DecisionTreeRegressor class from scikit-learn
* Our model does NOT learn during validation (persistence not

incorporated)
During training
T, wind speeds and  — v T410 Wind speed at
directions from Decision Tree Process coastline, 100m ASL
scanning lidar > ‘ A

During operation ‘
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Decision tree example
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RUNE experiment

* Reducing Uncertainty of Near-shore wind resource Estimates using

onshore scanning lidar technology combined with ocean and satellite
information

— Perform near-shore WRA using onshore instruments
— Compare & improve mesoscale model performance in coastal areas
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RUNE experimental setup

SS: 3 heights (50,100,150m
ASL @ 5km)

DD: 3 heights
(50,100,150m ASL)

3 scanning lidars

4 profiling lidars

1 floating lidar buoy
1 wave buoy

TerraSAR-X, Sentinel-1
satellite images

height m]

220 —

200 —

180 —

180 —

140 —

)
=
|

=
s
|

i

|

------------
--------------------
----------
o

.......
~~~~~~
-------------------
--------
.....

R P T
ves
L]
7 T eoea
A
/ 6264
/ T ezer
_ - 6260
P T —
444 a5 T T 28
8 448 450 northings km

eastings [kin|

Floors et.al: Report on RUNE's coastal experiment and first inter-comparisons between measurements systems
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Vertical Slice of Scan (0.844 deg elevation)
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Data filtering

* Scanning lidar
— CNR < -26.5 dB (remove)
— Missing measurements along LOS (remove entire line)
— Low availability in 10 minute average (only 1 point, remove)

* Profiling lidar
— Availability < 90% (remove)
— Maximum CNR > 10 dB (remove)
— Low CNR filter already implemented during operation

* Results
— Wind direction outside range 225-315 degrees (remove)
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Sector scan dataset

* Overview:
— 2015-11-26-1530 to 2016-02-17-0750
— 4203 10 minute periods with 5km range and >1 sample per 10min

* 700 hours, or 29 days of data

— 156 range gates per elevation height
* 0.271, 0.844 and 1.417 degrees

* 100-8150m horizontal distance
* Middle elevation = 100m height @ 5km

WLS66
Sector sean
Dual setup

Feh Mar

Dee Jan
Date
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Case study:

* Input: SS wind speeds and directions along 4km-5km horizontal distance
* Training data: 2015-12-04-0940 to 2015-12-18-0510 (14 days)

Filtering
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* Validation period: 2015-12-21-0950 to 2015-12-24-1620 (3.6 days)

14 DTU Wind Energy (Risg), Technical University of Denmark 9/14/16

HE



m

Case 1 Results:

n=194 x 10 min (32h) Regression coefficient = 1.005
* 27% of points filtered/missin
P J R2 = 0.9896
Real vs. Predicted Wind Speed
% Standard error = 0.007 m/s
i /
RMSE = 1.628 m/s
S
) ""3/":" ) RMCE = 1.790 m/s
Ny MAE = 1.406 m/s
B mgf Train Data
g, AR MAE
é - “"/ﬂg-.’ 5 dEE
& L SEE 3 win. | i 1.08
% ooy Vf::" z 1st Qu.: 8.85
2 P 1 Median :11.76
£10- ——r . Mean  :12.18
e Ird qQu. :14.91
17 Max. 124,03
/
_ | Prediction Data
/
// Predspd Realspd
P Min. 110,13 Mmin. :10. 33
// 1st qQu.:12.63 1st Qu. :13. 84
e Median :14.93 Median :15.51
|~ Mean :15.42 Mean :15.73
} o0 o 3rd Qu.:18.13  3rd Qu.:17.18
Reference Spd (m/s) Max. 122,23 Max. 122,98
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Time series result, wind speed:
20 i

T T T T T T T T
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2015-12-24 19:12
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Per_sistence Spd (mfsj

Persistence comparison

Real vs. Persistence Wind Speed

Reférence Spd (rﬁfs}
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n =194 x 10 min (32h)
Regression coefficient = 1.004
R?2 = 0.9979

Standard error = 0.004 m/s
RMSE = 1.126 m/s

RMCE = 1.907 m/s

MAE = 0.649 m/s
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Conclusion

* Lessons learned
— Persistence wins for now for normal operation (MAE & RMSE)
— Added value may lie within the extremes (RMCE)
— Sampling rate from RUNE is not fast enough (n=4 per 10 min)
— Elevated scanning including height variation not ideal

— There are other processes (e.g. air-sea interaction, orography, sea
breeze) which modify advection near the coast

* Future work
— @sterild balcony data remedies many of these issues
— Incorporate ongoing measurements during validation
— Recalibration of model in real time
— Probabilistic output
— Wind direction output

* Grazie:)
— Also check out Tobias Ahsbahs Thursday @ 18:00 ASI4, Vulcania

.-e'
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