

Probabilistic forecasting of wind power production losses in cold climates

Jennie P. Söderman, Heiner Körnich (SMHI), Esbjörn Olsson (SMHI), Hans Begström & Anna Sjöblom

Introduction

 \odot \odot

- Icing causes production losses
- Short-range, next-day, forecasts are important for trading
- These forecasts are uncertain
 - ⇒ The Aim of the study: Using probabilistic forecasting to improve the forecast skill and get estimations of the uncertainty

Method: Probabilistic forecasting

Ensemble forecasting

 Representing uncertainties in the initial conditions

The neighbourhood method

- Using the 25 nearest grid points as equally likely forecast
- Represent the horizontal error in the representativeness of the wind turbines

Method: Probabilistic forecasting

Ensemble forecasting

 Representing uncertainties in the <u>initial conditions</u>

The neighbourhood method

- Using the 25 nearest grid points as equally likely forecast
- Represent the horizontal error in the representativeness of the wind turbines

Method: Probabilistic forecasting

Ensemble forecasting

 Representing uncertainties in the initial conditions

The neighbourhood method

- Using the 25 nearest grid points as equally likely forecast
- Represent the horizontal error in the <u>representativeness of</u> <u>the wind turbines</u>

The NWP model

- Harmon-EPS
- HARMONIE-Arome cy38h1.2
- 2.5 km and 65 levels
- 1 control member, 3DVar, 3h-RUC
- 10 perturbed members based on the ECMWF EPS

The icing and production loss model

Icing model:

- Based on Makkonen Model (2000)
- Developed for ice accreation due to cloud water on cylinder Additions:
 - Ice accretion due to cloud ice, snow and rainwater
 - Sublimation, melting, shedding
 - Wind erotion

Production loss:

 Empirical relationship of modelled ice growth, ice load and wind speed

Production:

 Seasonally varying effect curves for each turbine from observed wind speed and power production.

Experimental period and available data

- Two weeks: 26/12-2011 to 8/1-2012
- Forecasts initialized 00,06,12,18 UTC (+42 h)
- Next-day forecasts: 06 UTC (+18-42 h)
- Observations:
 - 10 wind park sites in Sweden with meteorological measurements
 - From 3 of the sites also power production data

Results: Meteorological performance

Unbiased forecast error of the ensemble mean and ensemble spread

- ENSngb has the lowest forecast error
- ENS better than ngb method
- All approaches are underdispersive

Results: Meteorological performance

Average spread/skill ratio over all forecast lengths

Approach	Temperature	Wind speed	Relative humidity
CMngb	0.30	0.31	0.27
ENS	0.64	0.54	0.63
ENSngb	0.70	0.61	0.67

Results: Meteorological performance

In a "perfect" ensemble forecast spread/skill ratio = 1 ENS+ngb:

 \Rightarrow Best uncertainty estimation

Approach	Temperature	Wind speed	Relative humidity
CMngb	0.30	0.31	0.27
ENS	0.64	0.54	0.63
ENSngb	0.70	0.61	0.67

Results: Production loss

Forecasted daily mean production loss at one site

- ENSngb: Best agreement with observations and largest spread
- Forecasted uncertainty during icing events

Result: Production loss

RMSE for production and production loss forecasts averaged over 3 sites

	NWP Icing Production model model model	Approach	Prod (MW)	Prod loss (%)
СМ		CM	0.81 Ве	tter 36
CMngb		CMngb	0.78	34
EM	11 1 1	EM	0.78	35
ENS	11 11 11	ENS	0.75	32
ENSngb	11 275 275	ENSngb	0.74 🖌	31

Summary

- Forecasting wind power in cold climates has been addressed using probabilistic forecasting.
- Probabilistic forecasting improves the forecast skill in all steps of the modelling chain.
- Combined ensemble and neighbourhood method provides best forecast.

Future plans:

- Improve ensemble spread.
- Take into account ice and production model uncertainty.

Acknowledgements to the Swedish Energy Agency (Energimyndigheten) for funding the project

Thank you!

