

ERA-Interim based analysis of persistent cold air pools over the Carpathian Basin

Karolina Szabóné André, Judit Bartholy and Rita Pongrácz

Eötvös Loránd University, Budapest, Hungary

16th EMS Annual Meeting & 11th European Conference on Applied Climatology (ECAC) | 12–16 September 2016 | Trieste, Italy

Overview

- Motivation, goals
- Persistent cold air pools
- Methodology
- Verification of ERA-Interim
- Case study
- Conclusions, plans

Motivation, goals

- Why do we examine cold air pools?
 - Environmental effects (e.g. fog, smog, freezing rain)
 - Difficulties of forecast
- Why ERA-Interim?
 - Better temporal and spatial resolution compared to measurements
 - Easier to compare with model data
- Goals:
 - Climatic examination
 - Cold air pool searching algorithm to make easier forecasting it

Persistent cold air pools

Methodology

- Data used:
 - ERA-Interim 0.75°
 - Integrated Global Radiosonde Archive (IGRA)
 - NCDC Integrated Surface Database (SYNOP codes)

The topography of the examined domain (m) according to ERA-Interim. The examined stations (black marks) and the grid cells (blue squares)

Variables:

- $T_{2m}(^{\circ}C)$: temperature at 2 m,
- SCPE⁸⁵⁰(J/kg): shallow convective potential energy,
- gradT (K/100m): vertical temperature gradient,
- RH (%): relative humidity,
- Wind (m/s)

Verification of ERA-Interim

Budapest (ERA-Interim: 47.25N, 19.5E

real: 47.4N, 19.2E)

December 2004

November 2011

Shallow convective potential energy

Temperature at 2 m

2D meteograms

Budapest (47.25N, 19.5E)

Case studies

Vertical cross-sections

Latitude of Budapest (47.25N)

Wind (m/s)

06 UTC 13 December 2004 18 UTC 20 November 2011

Conclusions, plans

- The ERA-Interim reanalysis is suitable to examine persistent cold air pools
- Gridded database

 validate regional climate models
- Cold air pool searching algorithm

