## Present and future responses of Growing Degree Days for Crete Island in Greece



**Spyridon Paparrizos<sup>1</sup> and Andreas Matzarakis<sup>1, 2</sup>** 

Albert-Ludwigs-Universität Freiburg

<sup>1</sup>Faculty of Environment and Natural Resources, Albert-Ludwigs University Freiburg, Germany

<sup>2</sup>Research Center Human Biometeorology, German Meteorological Service, Freiburg, Germany

FREIBURG



- Climate affects practically all the physiological processes that determine plant life
- ➢ Major challenge and objective of the agricultural science → Prediction of the occurrences of specific physical and biological events
- ➢ Phenology → Study the flowering of plant species → Temperature and heat units → most important factors that affect the processes leading to flowering
- ➢ Growing Degree Days → Determination of heat requirements in the developing faces of the plants
- Understanding the flowering season development forecasting when flowering will occur



# Study area



- $\succ$  Crete Island  $\rightarrow$  South Greece
- Population: 623.065
- Area: 8.342 km<sup>2</sup>
- > Mean annual rainfall: 822 mm
- Mean air temperature: 17.2 °C





Figure 4. Map of air temperature (°C) for Crete for summer (June, July and August) during the normal period 1961 – 1990 (resolution: 1 km).

## Aim



### Agriculture

- → Main production and economic activity
- $\rightarrow$  Knowledge of present and future variation of GDD is mandatory
- Significant part of the local population is employed fully or partly in the agriculture section

Farming and manufacturing activities based on the agriculture activity

- $\rightarrow$  emerging need for a research
- $\rightarrow$  information and adapting systems
- → main local cultivations





### Assessment and mapping of future responses of the Growing Degree Days:

- 1. Statistical analysis
- 2. Downscaling
- 3. Spatial interpolation
- 4. Multi-linear regression techniques
- 5. Combination of statistical and dynamical approach
- Future periods: 2021-2050 and 2071-2100
- Future scenarios: IPCC Emission scenarios A1B and B1
- Future data (simulations): ENSEMBLES Project
  - Maximum Minimum air temperature
- → Main cultivations and characteristics



 $\rightarrow$ 

# **Material**



| M. S.      | Lat. (°) | Long. (°) | Elevation (m) | Period    |
|------------|----------|-----------|---------------|-----------|
| Souda      | 35.54    | 24.1      | 106.4         |           |
| Irakleio   | 35.32    | 25.17     | 68.3          |           |
| lerapetra  | 35.01    | 25.72     | 24.2          |           |
| Siteia     | 35.19    | 26.09     | 25            |           |
| Rethimno   | 35.34    | 24.5      | 118           |           |
| Tympaki    | 34.99    | 24.74     | 33.7          | 1981-2000 |
| Palaioxora | 35.23    | 23.68     | 25            |           |
| Anogeia    | 35.28    | 24.95     | 823.7         |           |
| Fourni     | 35.25    | 25.66     | 500           |           |
| Kastelli   | 35.12    | 25.2      | 350           |           |
| Zaros      | 35.13    | 24.90     | 322           |           |

| Main<br>Cultivations | Latin name              | GDD units to<br>maturity | References           |
|----------------------|-------------------------|--------------------------|----------------------|
| Olive                | Olea europaea           | 900+                     | Miller et al. (2001) |
| Grape vine           | Vitis vinifera          | 1210-1844                | Köse (2014)          |
| Tomato               | Solanum<br>lycopersicum | 1000-2000                | Raes et al. (2010)   |







### Climatological data:

- → <u>Reference period data</u>
  - Daily values of  $T_{\text{max}}$  and  $T_{\text{min}}$
- → Future data (simulations)

- Daily output simulations from 6 Regional Climate Models

Estimation of the Growing Degree Days:

$$GDD = (\frac{T_{max} + T_{min}}{2}) - T_{base}$$

Where:

T<sub>max</sub> : maximum air temperature (°C)

T<sub>min</sub> : minimum air temperature (°C)

T<sub>base</sub> : temperature below which the process of growth does not progress (current study: 10 °C)





### Downscaling for mapping

 $\rightarrow$  Combination of statistical and dynamical downscaling

→ <u>Statistical approach</u>: multi-linear regression technique

 $POINT_{value} = b_0 + b_1h + b_2slp + b_3X + b_4Y + b_5DistWat$ 

#### Where:

| GDD <sub>value</sub> :                        | dependent variable in a certain sample point                      |
|-----------------------------------------------|-------------------------------------------------------------------|
| <b>b</b> <sub>o</sub> :                       | constant                                                          |
| <b>b</b> <sub>1</sub> <b>b</b> <sub>5</sub> : | represent the coefficients obtained for each independent variable |
| h:                                            | elevation (m)                                                     |
| slp :                                         | slope (%)                                                         |
| X :                                           | longitude (°)                                                     |
| Y:                                            | latitude (°)                                                      |
| DistWat :                                     | distance from a body of water (sea or lake - km)                  |

### → Dynamical approach:

ArcGIS  $\rightarrow$  Ordinary Kriging  $\rightarrow$  1x1km grid  $\rightarrow$  each sample point: unique value

- Period: April October
- 8 > Statistical Analysis (measured data, scenarios)







## **Results - stations**

Chair of Environmental Meteorology



BURG

### **Multi-linear regression (11 stations)**



## **Results and Discussion**





| Period    | GDD Current | 2021-2050 |      | 2071-2100 |      |
|-----------|-------------|-----------|------|-----------|------|
|           |             | A1B       | B1   | A1B       | B1   |
| Apr - Sep | 2196        | 1947      | 1940 | 2231      | 2126 |
| Apr - Oct | 2496        | 2269      | 2260 | 2602      | 2476 |
| Apr - Nov | 2663        | 2488      | 2479 | 2857      | 2708 |

# **Discussion and conclusions**



- Future increase of growing degree days
  - → Water resources can benefit
  - → Avoiding overexploitation of aquifers
  - → Better soil quality
- Existing cultivations can reach maturity earlier
  - $\rightarrow$  Possible transfer of the cultivation period (e.g. Apr-Oct  $\rightarrow$  Apr-Sep)
  - → New, more pretentious but also profitable cultivations can be introduced

### Complex topography

 $\rightarrow$  Will act as an inhibitor towards the sustainable development and expansion of the existing crops onto higher altitudes







- Assess the future variations of the GDD in combination with future responses of precipitation
- > Application of the current study:
  - → Helping hand for all the stakeholders (farmers, civil authorities, etc.)
  - → Adjust their systems
  - → Manage their agricultural procedures
- In order to prevail against the effects of the climate change



Vielen Dank

## Thank you

## Ευχαριστώ πολύ