Predicting uncertainty in the global ICON Ensemble

• Perturbation Methods in global Ensembles
• The ICON-EPS
• The ECMWF-EPS
• Spread-Skill properties

by Michael Denhard
<table>
<thead>
<tr>
<th>Data provider</th>
<th>Model</th>
<th>Initial Pert.</th>
<th>Physics Pert.</th>
<th>Stochastic Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMA, China</td>
<td>MOGREPS</td>
<td>Bred Vectors</td>
<td>no</td>
<td>SPPT</td>
</tr>
<tr>
<td>CMC, Canada</td>
<td>GEPS 4.1.1</td>
<td>EnKF_192</td>
<td>yes</td>
<td>SPPT, SKEB</td>
</tr>
<tr>
<td>CPTEC, Brazil</td>
<td>CPTEC EPS</td>
<td>EOF based</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>ECMWF, Europe</td>
<td>IFS 43r3</td>
<td>EDA , ±SV</td>
<td>no</td>
<td>SPPT</td>
</tr>
<tr>
<td>JMA, Japan</td>
<td>GEPS_1701</td>
<td>ETKF, ±SV, SST</td>
<td>no</td>
<td>SPPT</td>
</tr>
<tr>
<td>KMA, Korea</td>
<td>EPSG</td>
<td>ETKF, SST</td>
<td>no</td>
<td>RPA, SKEB</td>
</tr>
<tr>
<td>MeteoFrance</td>
<td>PEARP</td>
<td>EDA ,± SV</td>
<td>no</td>
<td>RPhys</td>
</tr>
<tr>
<td>MetOffice, UK</td>
<td>MOGREPS</td>
<td>ETKF, SST, SoMo</td>
<td>no</td>
<td>RPA ,SKEB</td>
</tr>
<tr>
<td>NCEP, USA</td>
<td>GEFS</td>
<td>ETR</td>
<td>no</td>
<td>RPA</td>
</tr>
</tbody>
</table>

SPPT \rightarrow stochastic perturbed physical tendencies
SKEB \rightarrow stochastic kinetic energy backscatter
RPA/RPP \rightarrow random parameters
Rphys \rightarrow random physics
 ICON EPS

operational suite (will start November 2017)

• 40 Member
• Global, 40 km (-> +180h)
• 00/12 UTC → +180h and 06/18UTC → +120h
• ICON-EU Nest, 20 km (-> +120h)
• ETKF
• Focus is on short range up to +72h
• Boundary Conditions for COSMO-DE-EPS (2.8km, +27h)
• LETKF (Localized Ensemble Transform Kalman Filter, Hunt et.al. 2007)
• 40 Members (→ 80 Members)
• 3h Assimilation Cycle
• 40 km (20 km Europa)

• Covariance Inflation
 - multiplicative factor
 - additive Inflation $+0.25B_{3dVar}$ (NMC Method)
 - „relaxation to the prior“
 - SST 1°K random perturbations with spatial correlations of 100km/1000km and 1 day
Ensemble Data Assimilation (EDA)

Ensemble of independent 12-hour 4D-Var assimilations at T399L91 with two minimizations at T95 and T159 by perturbing observations.

Stochastic Physics (SPPT)

model physics perturbations

Singular Vector perturbations

Eigenvalue Problem \[M^* EMx = \lambda Dx \]

where \(M \) is the tangent linear Operator and \(D, E \) define the Norm at initial (D) and evolved (E) time.
Kinetic energy spectra of IFS M001 at 100 hPa
2016081000-2016081700 steps 0 - 120 h (8 fcts.)

Kinetic energy spectra of ICON M001 0195 at 100 hPa
2016081000-2016081700 steps 0 - 120 h (8 fcts.)

LETKF covariance inflation?

Perturbed Observations?
Forecasts | ICON-EPS (ice)
| ECMWF-EPS (ece)

Verification | Mai, June, July, August, September (2016)

Lead times | up to +180h

Resolution | 1,5° x 1,5° regular lat/lon (aggregated from finer grids)
| 0,5° x 0,5° regular lat/lon

Domains | Northern Mid Latitudes (20° - 65°N, NML)

Parameter | 500hPa Geopotential
Time Series

RMSE, Spread
+24h

ICON-EPS

ECMWF-EPS

rmse & spread

May Jun Jul Aug Sep Oct

time

May	Jun	Jul	Aug	Sep	Oct
4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 |
4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 |
5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
5.5 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 |
6.0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 |
6.5 | 7.0 | 7.5 | 8.0 | 8.5 | 9.0 |
7.0 | 7.5 | 8.0 | 8.5 | 9.0 | 9.5 |
7.5 | 8.0 | 8.5 | 9.0 | 9.5 | 10.0 |
8.0 | 8.5 | 9.0 | 9.5 | 10.0 | 10.5 |
8.5 | 9.0 | 9.5 | 10.0 | 10.5 | 11.0 |
9.0 | 9.5 | 10.0 | 10.5 | 11.0 | 11.5 |
9.5 | 10.0 | 10.5 | 11.0 | 11.5 | 12.0 |
10.0 | 10.5 | 11.0 | 11.5 | 12.0 | 12.5 |
10.5 | 11.0 | 11.5 | 12.0 | 12.5 | 13.0 |
11.0 | 11.5 | 12.0 | 12.5 | 13.0 | 13.5 |
11.5 | 12.0 | 12.5 | 13.0 | 13.5 | 14.0 |
12.0 | 12.5 | 13.0 | 13.5 | 14.0 | 14.5 |
12.5 | 13.0 | 13.5 | 14.0 | 14.5 | 15.0 |
13.0 | 13.5 | 14.0 | 14.5 | 15.0 | 15.5 |
13.5 | 14.0 | 14.5 | 15.0 | 15.5 | 16.0 |
14.0 | 14.5 | 15.0 | 15.5 | 16.0 | 16.5 |
14.5 | 15.0 | 15.5 | 16.0 | 16.5 | 17.0 |
15.0 | 15.5 | 16.0 | 16.5 | 17.0 | 17.5 |
15.5 | 16.0 | 16.5 | 17.0 | 17.5 | 18.0 |
16.0 | 16.5 | 17.0 | 17.5 | 18.0 | 18.5 |
16.5 | 17.0 | 17.5 | 18.0 | 18.5 | 19.0 |
17.0 | 17.5 | 18.0 | 18.5 | 19.0 | 19.5 |
17.5 | 18.0 | 18.5 | 19.0 | 19.5 | 20.0 |
18.0 | 18.5 | 19.0 | 19.5 | 20.0 | 20.5 |
18.5 | 19.0 | 19.5 | 20.0 | 20.5 | 21.0 |
19.0 | 19.5 | 20.0 | 20.5 | 21.0 | 21.5 |
19.5 | 20.0 | 20.5 | 21.0 | 21.5 | 22.0 |
20.0 | 20.5 | 21.0 | 21.5 | 22.0 | 22.5 |
+24h

ICON-EPS

ECMWF-EPS
+72h

ICON-EPS

ECMWF-EPS
Spread-Skill properties

\[
E\left(\|f_{i,t,k} - \langle f_{i,t} \rangle_q\|_q\right) = E\left(\|a_{i,t} - \langle f_{i,t} \rangle_q\|_q\right) \quad \forall k \in K
\]

Forecast \(f_{i,t,k} \) with \(k = 1, \ldots, K \) ensemble members

Analysis \(a_{i,t} = h(o_{i,t}) \)

Observation \(o_{i,t} \)

Time steps \(t = 1, \ldots, T \)

Grid points \(i = 1, \ldots, N \)

\(q \)-Norm
ICON EPS vs. Observations

provided by Felix Fundel

Geopotential [20160801, 20161005]

Spread/Skill ratio

Feedbackfile Verification by Felix Fundel

… using forward operators from data assimilation
500hPa Geopotential, NML

![Graph showing rmse & spread over lead time](image)

![Graph showing rmse & spread over time](image)
30. September 2016 0,5° x 0,5°

Error [Pa]

+24h ICON Ensemble 0.5° x 0.5°

+168h ICON Ensemble 0.5° x 0.5°

ICON-EPS

Spread [Pa]

+24h ECMWF-EPS 0.5° x 0.5°

+168h ECMWF-EPS 0.5° x 0.5°

ECMWF-EPS
→ 1.5° x 1.5° grid

+24h ICON Ensemble

+168h ICON Ensemble

+24h ECMWF-EPS

+168h ECMWF-EPS

30. September 2016

Spread [Pa]
Spread-Skill Reliability

Leutbecher, M., 2009: Diagnosis of Ensemble Forecasting Systems, ECMWF

Linear Regression Model
Spread Skill Reliability

slope of linear regression model

Calibration:
- multiplicative inflation and deflation
- mean spread equals mean error (dotted lines)

perfect = 45°
lead time is colour coded

ECMWF-EPS

ICON-EPS

slope of spread/error regression [°]
The ICON EPS …

… has reasonable spread/skill properties

… but it takes to long to develope a proper spread skill relation.

→ outside the forecast range of LAM ensembles
Stochastic non-dynamical forcing pushes the model state away from its stable manifold!

\[\text{\textup{spectral pattern generator}} \]

"Stochasticity should be introduced only where appropriate and not in every part of the model physics, otherwise physical meaning is lost."

SRNWP workshop on physical parametrisation and ensemble prediction 18-20 June 2013, Madrid Spain