

Purpose

- How to minimise cost and increase efficiency?
 - Grass growth is seen as the key to profitability and sustainability
 - Can remote sensed data, the enhanced vegetation index (EVI), be used to measure grass?
 - How is EVI related to agronomic conditions such as weather and soil?
 - How does this relationship change from region to region

Literature

- Irish grass growth potential
 - Low feed costs (Finneran et al., 2010)
 - Grass can supply >70% of livestock dietary requirements (Dillon et al., 2005)
- Irish grass growth models
 - Often developed on research farms (Hurtado-Uria et al., 2013)
 - Include temperature, rainfall, and soil characteristics (Hazeu et al., 2011)
 - Can be improved with spatial data (Schulzke and Kaule, 2001)

Data and Methodology

- Enhanced vegetation index (EVI) data along with soil and weather data was mapped against 90,994 farm locations in Ireland
- Random effects models were used to relate EVI to geoclimatic data
- Cluster analysis was used to develop grass growth condition zones

Selected Summary Statistics

Variable	Mean
Annual Cumulative EVI	6.4
Monthly Rainfall (mm)	98.3
Temperature	8.3
Altitude (m)	87.3
Slope (%)	3.5
Distance to sea (km)	29.9

Other control variables

- Soil type and texture
- Electoral district stocking rate and mean farm size

Structure of Models

- Random effects model used to regress geoclimatic variables on vegetation growth from 2002 to 2015
- $EVI_{itm} = \alpha + w'_{itm} + g'_i + t_i + u_{itm}$

	Annual Observations	Monthly Observations
Individual Farms (n=90,994)	Explain annual feed availability on the farm	Chart grass growth curve through the growing season
Electoral Divisions (n=2,919)	Add Census of Agriculture variables (e.g. stocking rate)	Control for unobserved heterogeneity

Farm Level Results

Monthly

- Overall r-squared = 0.50
- 13,169,638 observations
- Rainfall has a positive effect in current month, but negative in lag months
- Grass growth is highest in May, June, and July lowest in December

Annual

- Overall r-squared = 0.47
- 1,265,670 observations
- Silty, rendzina soils performed best; rocky or peaty soils were worst
- Farms without steep slopes, further inland, and further south had highest EVI scores

Electoral District Results

Monthly

- Overall r-squared 0.68
- 422,887 observations
- All weather variables highly significant

Annual

- Overall r-squared = 0.70
- 40,680 observations
- Highest explanatory power
- Controls for noise caused by farm level differences in management

Regional Analysis

- R-squared ranged from 0.55 to 0.73
- Geoclimatic effects are broadly similar across regions
- Optimal stocking rate ranged from 2.5 LU/ha in the south to <1 in northwest

Conclusions

- EVI can be a measure for grass growth on a national scale
- Agronomic conditions vary widely across Ireland
- Farm management data is key to model improvement
- Future research
 - Supply and demand of feed energy on Irish farms
 - National and local grass yields

Acknowledments

- Teagasc Walsh Fellowship Programme
- National University of Ireland Galway

Thank You

Feel free to email me at edward.knapp@teagasc.ie

Hierarchical Cluster Analysis

	Cluster 1 (n=697)		Cluster 2 (n=1273)		Cluster 3 (n=564)		Cluster 4 (n=385)		Full sample (n=2,919)	
Variable	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Annual Cumulative EVI	6.5a	0.5	6.5b	0.5	6.5a	0.6	5.5c	0.7	6.4	0.7
Monthly Rainfall (mm)	97.4a	7.4	84.9b	8.2	113.9c	19.0	121.1	16.0	98.3	18.4
Mean Temperature	9.4a	0.4	9.1b	0.5	4.3c	0.9	9.5a	0.3	8.3	2.0
Principal Soil Type (Base Case = Grey Brown Podzolic)	Brown earth 0.5a	0.4	Grey brown podzolic 0.6b	0.4	Brown podzolic 0.5a	0.4	Gley 0.4a	0.4	Grey brown podzolic 0.3	0.4
Principal Soil Texture (Base case = Mixed)	Mixed 0.3a	0.4	Mixed 0.5b	0.4	Sandy 0.6c	0.4	Mixed 0.3a	0.3	Mixed 0.3	0.4
Altitude (Metres)	79.7a	54.5	90.1b	37.7	99.5c	56.0	73.9a	36.8	87.3	46.7
Slope (%)	3.6a	1.5	2.7b	1.1	4.2c	1.5	4.7	1.5	3.5	1.6
Mean Distance to Sea (Km)	15.9a	11.7	48.5b	22.1	16.3a	14.1	13.5a	13.5	29.9	24.0
Km north	208.5a	84.0	224.2b	57.5	87.4c	29.5	315.8	75.3	206.1	92.2
Mean Stocking Rate	1.2a	0.3	1.2b	0.3	1.3c	0.4	0.6	0.2	1.2	0.4
Mean Farm Size (Ha)	34.5a	12.4	36.9b	12.0	37.7b	11.6	27.9c	13.7	35.3	12.6
Note: a-c indicates means within a row differ (P<0.05)										

Annual Effect on EVI (Base Year 2002)

