

JASMIN (STFC/Stephen Kill)

JASMIN and the role of Cloud Computing in realising a Big Data facility for the Environmental Sciences

European Conference for Applied Meteorology and Climatology 2017 4–8 September 2017, Dublin, Ireland

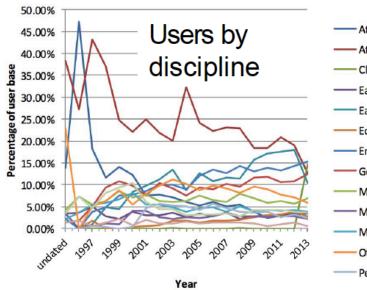
Philip Kershaw⁺ Victoria Bennett⁺, Jonathan Churchill^{*}, Bryan Lawrence[^], Matt Pritchard⁺, Matt Pryor⁺

Centre for Environmental

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

Data Analysis

+NCAS/NCEO CEDA STFC, *STFC Scientific Computing Dept., ^NCAS / University of Reading

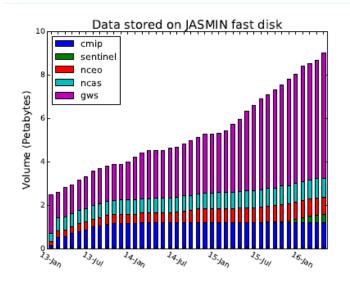


> 30,000 registered users

ata	Data - Type	Data Volume (Petabytes)
	Earth Observation	1.5
Curated	Atmospheric Science	0.8
CEDA (Climate Model	1.2
C C C	Total	3.0

Science & Technology Facilities Council

Rutherford Appleton Laboratory



Atmospheric Chemistry

Atmospheric Physics

Climate Change

- Earth Observation
- Earth Science
- Economics
- Engineering
- Geography
- Marine Science
- Maths/Computing Sciences
- Medical/Biological Sciences
- Other
- Personal use

2015-2016 increasing data storage on JASMIN, in Group Workspaces (GWS) and archive

- ~ 400 datasets ۲
- ~ 150 million files ٠

Big Data driving changes in architecture \rightarrow

Federated data centres

- Multiple organisations

- Supports geographically distributed download to client environment

- Earth System Grid Federation (from 2008) Data analysis facility

- Bring the compute to the data paradigm

- JASMIN (from 2012)

Single data centre

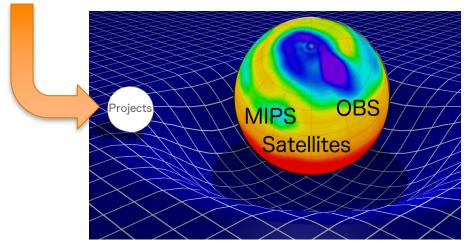
- Download to user desktop model

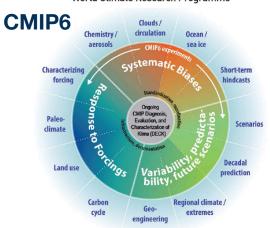
- CEDA (< 2008: pre-ESGF and pre-JASMIN)

National Centre for Atmospheric Science

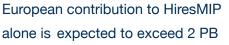
science & Technology Facilities Council <u>Rutherfo</u>rd Appleton Laboratory

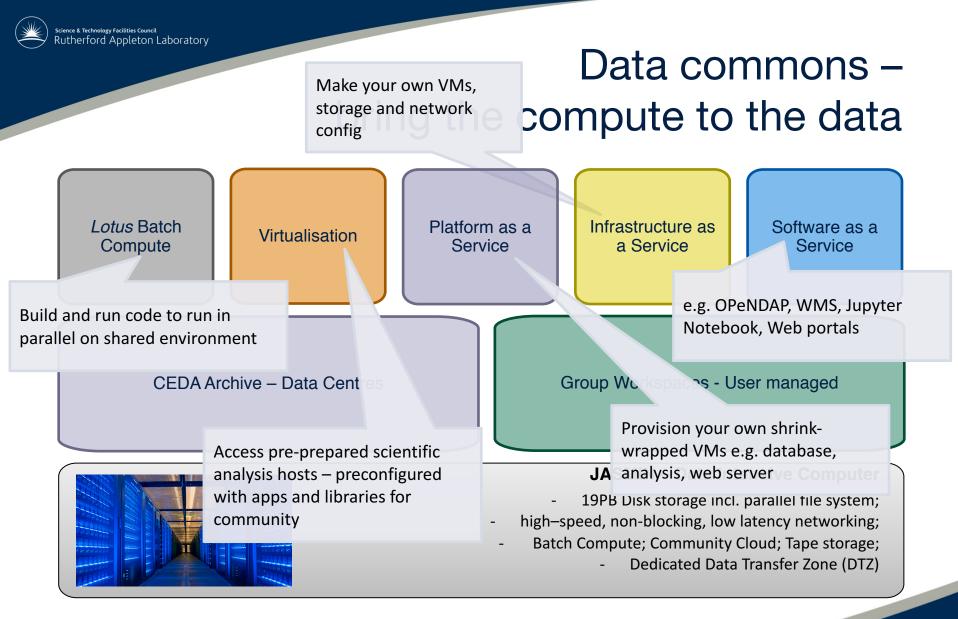
National Centre for Earth Observation


NATURAL ENVIRONMENT RESEARCH COUNCIL


JASMIN as a Data Commons

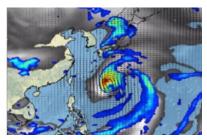
Data gravity associated with *managed data* so that users want to bring their projects to the the JASMIN environment


Sentinel Data

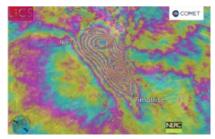

Sentinel missions data rate: ~6PB/year

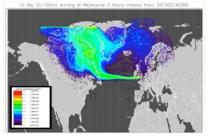
National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Atmospheric Science



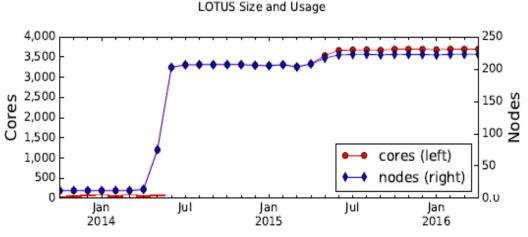
National Centre for Earth Observation




JASMIN usage

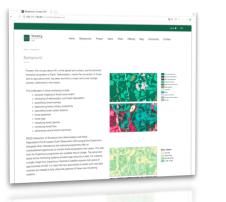
High Res Climate Model

Fault analysis


Atmospheric dispersion

National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

- ~150 Science projects on JASMIN
- Lotus, the batch compute environment has had a high-level of utilisation and has been successively expanded over the course of JASMIN's existence.


Evolving usage of the Lotus batch cluster: by mid-2016 over 2 million core hours per month!

Centre for Environmental Data Analysis

JASMIN usage: Cloud

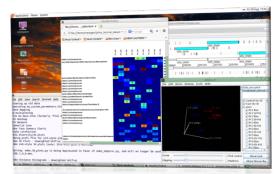
ESA Forestry Thematic Exploitation Platform

ESA Climate Change Initiative Open Data Portal

ESA Polar Thematic Exploitation Platform

National Centre for

Atmospheric Science


NATURAL ENVIRONMENT RESEARCH COUNCIL

Attendees at ESA Summer school, ESRIN used **OPTIRAD Jupyter Notebook environment**

Majic interface to Jules Land-surface model on JASMIN

EOS Cloud - Desktop-as-a-Service for Environmental Genomics

Centre for Environmental Data Analysis

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

- Credit ESA

Challenges and new developments to address them

Challenges

- 1) Scaling in terms of
 - 1) Increasing data volumes
 - 2) the size of the infrastructure
 - 3) the numbers of users and
 - 4) the impact of the above on the overall management and operation of the system.

2) Long-tail science use cases

- 1) Effective exploitation of parallelism
- 2) More intuitive use desktop app style experience

New developments

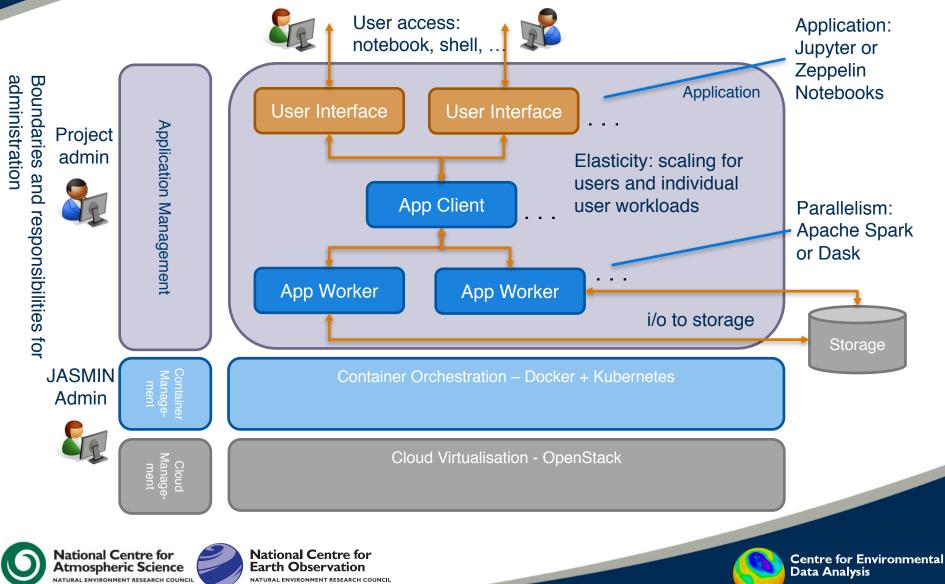
- 1) Addressing scaling challenges
 - 1) Object storage
 - 2) Container technologies

- 2) 'Cluster-as-a-Service'
 - 1) Cluster computing to support
 - 2) SaaS, Virtual research environments

ATURAL ENVIRONMENT RESEARCH COUNCIL

Cluster-as-a-Service

- Provide cluster to host systems which to some degree abstract parallelism from the user e.g.
 - Apache Spark
 - Dask (Continuum Analytics)
- Provide support for elasticity cluster resources can be scaled to meet demand and released when unused
- Work is being underpinned by use of container technologies
 - Docker and Kubernetes
 - Provide means to more easily scale and manage services
- Collaborations with
 - MetOffice Informatics Lab (JADE system)
 - NERC DataLab project (Spark with Jupyter/Zeppelin Notebooks)

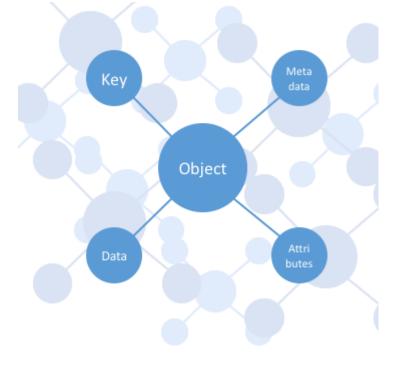


TURAL ENVIRONMENT RESEARCH COUNCIL

Cluster-as-a-Service

JASMIN (STFC/Stephen Kill)

Data Storage


OBJECT STORAGE

Object Store

- A computer storage architecture in which • Objects are stored in a flat structure
 - Objects are identified by a unique key (a • URL)
 - Objects are organised into *Buckets* •
 - Object store can be accessed over a HTTP interface
 - Amazon's S3 HTTP REST API is the most popular
 - Data is uploaded and downloaded using PUT and GET operations respectively
 - Data may be split across objects
 - Supports two levels of metadata
 - System level metadata
 Extendable metadata
 - Allows searching for data without opening • the file and custom searches for user data

Centre for Environmental Data Analysis

Migrate to Object Storage?

POSIX file system

- Fast disk is too expensive at scale
 - Cost of expansion (more PBs)
 - End-of-life for JASMIN1 storage is the end of 2017 (5PB)
- Metadata minimal
- uid/gid management:

National Centre for

Atmospheric Science

TURAL ENVIRONMENT RESEARCH COUNCI

 bleeding of root privileges beyond scope of a given host to global file system permissions

National Centre for

NATURAL ENVIRONMENT RESEARCH COUNCIL

Earth Observation

 Creates unnecessary division in access model – between POSIX and network access protocols such as HTTP

Object Storage

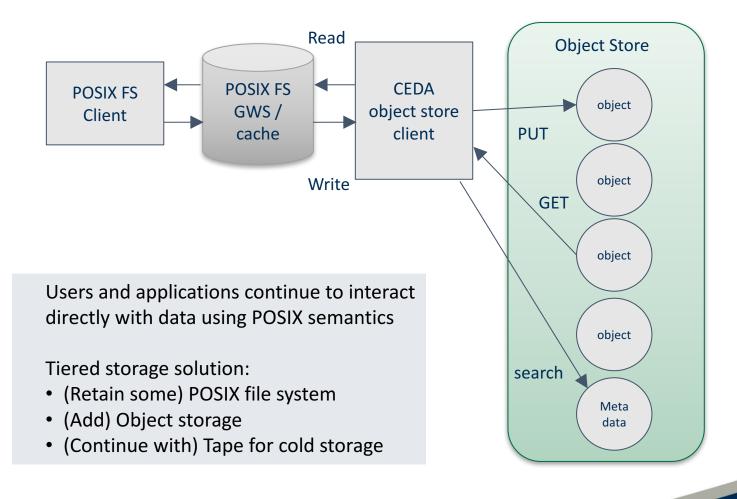
- Cost / TB of object stores is lower
- Metadata
 - Allows searching of files without opening the file
 - As long as the metadata is well constructed
- Independent access model to POSIX uid/gid
- Single common HTTP API (S3) for access

 from within infrastructure, from private cloud or external access
- More amenable to cloud architecture: e.g. more easily move apps and data between on-prem and public cloud

Centre for Environmental Data Analysis

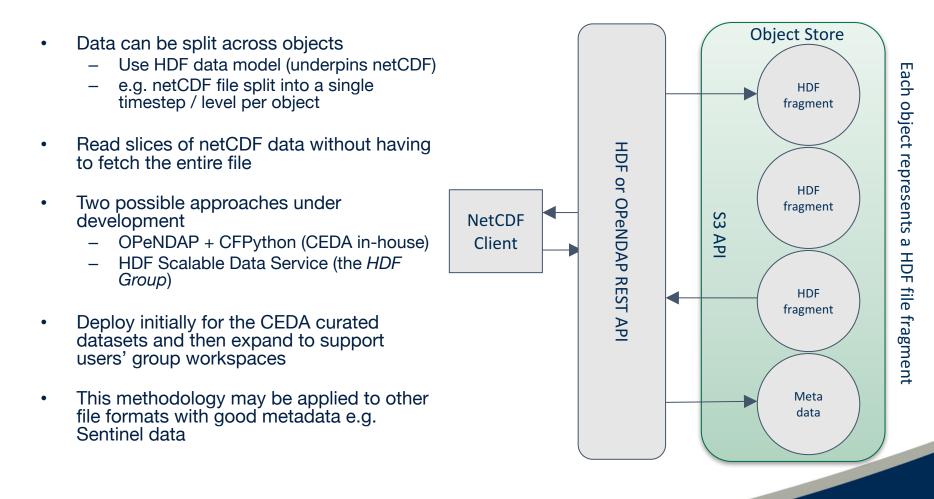
Object Store interfaces

- This represent a fundamental change in access how do we manage the *interface* to applications and users?
- Two key approaches:
 - 1. S3 interface with POSIX cache
 - shorter timescale (within year)
 - 2. HDF REST API or OPeNDAP over object store:
 - longer term (one year+ even for first datasets)



1) S3 Interface with POSIX Cache

National Centre for Atmospheric Science



National Centre for Earth Observation

2) HDF REST API or OPeNDAP over object store

National Centre for Atmospheric Science

National Centre for Earth Observation

Object Store - Roadmap

- Proof-of-concept with object store vendors just completed
- Further tests being carried out to assess functionality and performance for workloads in our domain
- Rollout object storage in stages:
 - S3 interface with POSIX cache (within year)
 - HDF REST API or OPeNDAP over object store (longer term: one year+ even for first datasets)
- Engage closely with user community to support them with the transition

- JASMIN: data gravity, a data commons for environmental sciences
- Established system and track record of use by the community
- Challenges with respect to running at scale:
 - Data volumes
 - Numbers of users
- New infrastructure services to address challenges:
 - Cluster-as-a-Service
 - Container-based automation
 - Object store migration
 - Staged rollout to minimise the impact of changes on the user community

icience & Technology Facilities Council Rutherford Appleton Laboratory

ATURAL ENVIRONMENT RESEARCH COUNCIL

Further Information

- CEDA and JASMIN:
 - <u>http://www.jasmin.ac.uk/</u>
 - <u>http://www.ceda.ac.uk/</u>
- JASMIN paper

Lawrence, B.N., V.L. Bennett, J. Churchill, M. Juckes, P. Kershaw, S. Pascoe, S. Pepler, M. Pritchard, and A. Stephens. **Storing and manipulating environmental big data with JASMIN.** *Proceedings of IEEE Big Data 2013, p68-75, doi:10.1109/BigData.2013.6691556*

- ESA Climate Change Initiative Open Data Portal
 - <u>http://cci.esa.int/</u>
- CEDA ESGF node
 - <u>https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/</u>
- ESGF ICMWG (International Climate Network Working Group)
 - <u>http://icnwg.es.net/</u>
- ESNet Science DMZ
 - http://fasterdata.es.net/
- philip.kershaw@stfc.ac.uk, @PhilipJKershaw

NATURAL ENVIRONMENT RESEARCH COUNCIL