Urban PBL evolution determined by ceilometer and weather prediction model in fair weather over Sofia

SOFIA UNIVERSITY ST. KLIMENT OHRIDSKI

V. Danchovski¹, R. Dimitrova¹

¹ Sofia University "St. Kliment Ohridsky", Sofia, Bulgaria

TOPROF

danchovski@phys.uni-sofia.bg

Abstract

The evolution of the atmospheric boundary layer over an urban area with complex topography is simulated using Advanced Research WRF (ARW) mesoscale numerical weather prediction model for five fair weather days (24 - 28 August 2015) during summer of 2015. High resolution simulations are used to test performance of nine PBL schemes in predicting of boundary layer height against retrieved one from ceilometer profiles. Different gradient detecting algorithms for determination of PBL height from ceilometer data are also compared. Radiosonde data is used as a reference for validation of numerically simulated and ceilometer detected PBL heights. Despite using of different proxies' ceilometer and radiosonde retrieved PBL depths around noon are similar which indicate that ceilometers are suitable instruments for determination of convective PBL height in fair weather. In some periods, especially at night, analysis of ceilometer profiles does not allow an unambiguous determination of PBL height as it presumes a uniformly distributed aerosol. Therefore significant lack of concurrence with simulated values is not unexpected. Numerical simulations also revealed that influence of urban area on boundary layer evolution is mostly discernible during evening transition.

Data and Methods

Instruments: Lufft's (Jenoptic) ceilometer CHM15k situated in the centre of Sofia in combination with upper air measurements based on radiosonde launching at National Institute of Meteorology and Hydrology (located 4.4km southeast of the ceilometer). **PBLH detecting algorithms**:

from CHM15k profiles - 3 methods (two 1D and one 2D):

- 1st derivative of PR²;
- modified idealised fit (signed as NLM);
- STRAT.

NLM (non-linear model) allows simultaneous determination of planetary boundary layer height (PBLH), entrainment zone depth (EZ), height of full overlapping (FOH) and height of zero overlapping (ZOH). NLM is fitted to range corrected backscatter power.

$$NLM(z) = \left\{ \left(\frac{S_{pbl} + S_{fa}}{2}\right) - \left(\frac{S_{pbl} - S_{fa}}{2}\right) \operatorname{erf}\left(2.77 \frac{z - PBLH}{EZ}\right) \right\} \left(\frac{\operatorname{erf}\left(3 \frac{2z - FOH - ZOH}{2(FOH - ZOH)}\right) + 1}{2} \right)$$

PBLH determination from **radiosonde** was carried out by 3 methods:

- bulk Richardson method according (Ric=0.21);
- parcel method;
- lapse rate method ($d\Theta/dz > 2K/km$).

PBLH detection methods comparison:

Multiple instruments and multiple methods inter-comparison of detected PBLH[m]

date & time	STRAT	1 st der.	NLM PBLH	EZ	FOH	ZOH	Lapse rate	parcel	Ric
24/08/15 13:30 LT	1283	1395	1418	264	580	190	1280	1460	1400
25/08/15 13:30 LT	1695	1755	2337	885	537	212	1670	1730	1710
26/08/15 13:30 LT	1857	2355	2408	91	407	234	2260	2280	2280
27/08/15 13:30 LT	1607	1650	1699	63	485	221	1330	1630	1630
28/08/15 13:30 LT	1166	1170	1270	121	463	229	1160	1200	1200

ARW-WRF v.3.8.1 model setup for the Sofia region Configuration:

- Lambert projection (23.4°E, 42.68°N)
- nested domains with grid sizes of 32, 8, 2 and 0.5 kms
- **Resolution of the inner domain: 157x129x51**
- Input data: NCEP Final Analysis 0.25 deg
- 21 MODIS-based Land Use Categories
- 9 PBL parametrization schemes (ACM2, BouLac, MYJ, MYNN2.5, MYNN3, QNSE, TEMF, UW, and YSU)

WRF PBLH vs STRAT:

Accuracy metric	period	ACM2	BouLac	MYJ	MYNN2.5	MYNN3	QNSE	TEMF	UW	YSU
RMSE	8-12 LT	708	774	950	783	806	649	905	978	848
	16-20 LT	930	618	1046	483	550	472	1252	1278	805
ME	8-12 LT	-528	-631	-856	-672	-699	-486	-778	-900	-734
	16-20 LT	-516	-283	-905	-246	-382	96	-1060	-1165	-497
MAE	8-12 LT	626	683	857	687	708	552	797	900	750
	16-20 LT	741	469	919	367	457	416	1072	1170	602
IA	8-12 LT	0.54	0.50	0.42	0.49	0.46	0.53	0.45	0.42	0.47
	16-20 LT	0.39	0.59	0.36	0.66	0.55	0.67	0.28	0.29	0.48
COR	8-12 LT	0.46	0.44	0.36	0.46	0.40	0.40	0.35	0.45	0.43
	16-20 LT	0.19	0.49	0.24	0.55	0.44	0.51	-0.14	0.13	0.40

Urban effects on PBLH and its growth due to enhanced heat capacity and roughness:

PBLH at 18 LT, BouLac

PBL grow rate at 19 LT in m/min, BouLac

PBL

scheme

Conclusions

It was shown that in convective situations retrieved by ceilometer PBLH is in very good agreement with determined by rawinsonde, despite using different tracers.

The new PBLH detection method proposed here is suitable for simultaneous evaluation of both PBLH, EZ and ceilometer's overlapping parameters.

In summary non-local PBL schemes represent better PBL evolution in the morning, local schemes, except TEMF, UW, MYJ, perform well in the late-afternoon and early evening.

In the evening PBL is higher above urban area as a result of higher heat capacity, but it decreasing rate is also higher because of increased roughness in the city.

Acknowledgments

This work has been financially supported by Bulgarian National Science Fund (BNSF) Young Research Grant № DM 04/1. We would also like to mark COST Action ES1303 – TOPROF contribution.

published under the Creative Commons Attribution 4.0 license