Numerical Effects on Wave Propagation in Atmospheric Models

Daniel Joe Griffin (djg211@exeter.ac.uk)

Supervisor: Professor John Thuburn

Tuesday 5th September 2017

Space weather motivation

Figure 1 : Illustration of the potential impacts of space weather to technology in space and at high altitudes [The Met Office].

Ray tracing equations

The coupled system of equations we solve for $\mathbf{x} = (x, z)$ and $\mathbf{k} = (k, m)$ is

$$\frac{D_{\boldsymbol{c}_g}}{Dt}(\boldsymbol{x}) = \boldsymbol{c}_g(\boldsymbol{k}, T)$$
(1)

$$\frac{D_{\boldsymbol{c}_{\boldsymbol{\varepsilon}}}}{Dt}(\boldsymbol{k}) = -\boldsymbol{\nabla}\omega, \qquad (2)$$

where $m{c}_g = m{
abla}_{m{k}} \omega$ is the group velocity, ω is the frequency and

$$\frac{D_{\boldsymbol{c}_{\boldsymbol{g}}}}{Dt} = \frac{\partial}{\partial t} + \boldsymbol{c}_{\boldsymbol{g}} \cdot \boldsymbol{\nabla}$$

represents the rate of change of a variable with time at a position moving with the group velocity $\pmb{c}_g.$

Analytical wave propagation for different angles

Figure 2 : Ray plot of acoustic waves with a total wavenumber of 1×10^{-4} initiated with a range of wavevector angles from 0 to π , using the analytical wave equation with the USSA temperature profile.

Effect of space discretisation on wave propagation

Figure 3 : A comparison of ray plots of acoustic waves with a total wavenumber of 4×10^{-5} initiated with a range of wavevector angles measured from the horizontal, from 0 to $\pi/2$ (above: the analytical wave equation, and below: the spatially-discrete wave equation with $\Delta x = 100$ km, $\Delta z = 1$ km).

The discrete-in-space group velocity

For waves to be resolved in the numerical grid, we require

$$0 < k < \pi/\Delta x \tag{3}$$

where k is the horizontal wavenumber and Δx is the horizontal resolution. This limits the angles of wavevectors that can be used.

The numerical version of the horizontal group velocity: $\partial \omega / \partial \hat{k}$, where \hat{k} is the numerical horizontal wavenumber, is

$$\frac{\partial \omega}{\partial \hat{k}} = \frac{\partial \omega}{\partial k} \cos\left(\frac{\hat{k}\Delta x}{2}\right). \tag{4}$$

Note: $\cos(\hat{k}\Delta x/2) \sim 0$ at the limits of k in equation (3). If $\partial \omega / \partial \hat{k} \approx 0$, then the wave propagates straight upwards, even for large horizontal wavenumbers k.

Cg

Figure 4 : k = 0, then the wavevector and group velocity go in the same direction. Figure 5 : $k = \pi/\Delta x$, so the wavevector angle changes. The analytical group velocity matches the wavevector direction, but the numerical group velocity still points up.

A 3 >

э

The discrete-in-space group velocity

Figure 6 : Initial group velocity angles up to $\pi/2$ for a range of initial wavevector angles up to $\pi/2$ for acoustic waves with a total wavenumber of 1×10^{-4} .

Effect of time discretisation on wave propagation

Figure 7 : Ray plot of acoustic waves with a total wavenumber of 1×10^{-3} initiated with a wavevector angle of 0.3π , run for 30 minutes, using either the analytical wave equation or time-discrete wave equation with a 3 second timestep.

Wave amplitude growth

The background density varies like

$$\rho_0 \propto \exp\left(-\frac{z}{H}\right).$$
(5)

Relative density perturbations ρ'/ρ_0 vary like:

$$\frac{\rho'}{\rho_0} = W \rho_0^{-1/2},\tag{6}$$

where W is the wave energy.

 ${\it W}$ is described by the wave energy conservation law, which is given by

$$\frac{D_{\boldsymbol{c}_g}}{Dt}(\log W) + \boldsymbol{\nabla} \cdot \boldsymbol{c}_g + \frac{2}{\tau} = 0, \tag{7}$$

where τ represents timescales for decaying processes (either molecular viscosity or numerical damping).

Wave amplitude growth

Wave energy conservation law:

$$\frac{D_{\boldsymbol{c}_g}}{Dt}(\log W) + \boldsymbol{\nabla} \cdot \boldsymbol{c}_g + \frac{2}{\tau} = 0, \qquad (8)$$

Figure 8 : The wave amplitude growth factor for a vertically propagating acoustic wave with a total wavenumber of 1×10^{-4} under different conditions. The discretised-in-time wave equation used 5 minute timesteps.

Conclusions

In summary:

- We have used ray tracing techniques to gain insight into how resolution affects wave propagation in numerical models compared with the analytical equation.
- We learnt that molecular viscosity and diffusion has a significant damping effect in the thermosphere.
- Further experiments have confirmed that including molecular viscosity and diffusion in atmospheric models can prevent excessive wave growth at high altitudes, and improves their stability.
- 📕 D. J. Griffin and J. Thuburn (2017)

Numerical Effects on Wave Propagation in Atmospheric Models submitted to the Quarterly Journal of the Royal Meteorological Society