

<u>Vladimir Platonov¹</u>, Alexander Kislov¹, Gdaly Rivin², Mikhail Varentsov¹, Inna Rozinkina² and Mikhail Nikitin²

contact: vplatonov86@gmail.com

¹Moscow State University, Faculty of Geography, Department of Meteorology, Moscow, Russian Federation, ²Hydrometeorological Center of Russia, Moscow, Russian Federation

The regional non-hydrostatic atmospheric model COSMO-CLM used for the long-term (30 years, 1985 – 2014) simulation with 13.2, 6.6 and 2.2 km horizontal resolutions. The main objective of creation this dataset was the investigation of *statistical characteristics* and *physical mechanisms* of *extreme weather events* (primarily, wind speed extremes) on the small spatial and temporal scales.

Model, experiments, methods and dataset description

<u>COSMO-CLM</u> (ver. 5.0) is the <u>climate version</u> of the well-known non-hydrostatic regional mesoscale

Downscaling technique.

-Initial and boundary conditions for experiment over the 13,2 km domain came from ERA-Interim reanalysis (every 6 hours) and from the global external parameters database (EXTPAR, provided by CLM-Community) for the **1985 – 2014 period**.

-<u>Continuous runs</u> has been executed for <u>many months</u> periods (up to 1 year) - The 'spectral nudging' technique was used in order to control the internal model behavior and allow to execute long-term experiments without significant deviation of the model fields from the actually observed.

-<u>Output fields **from 13,2 km** domain</u> are initial and boundary <u>conditions for</u> **6,6 km** domain during the whole 30-year period.

-The same technique was applied for 2,2 km domain, but for the most extreme wind speed events only.

-Resources and data volume: SC "Tornado", Hydrometcenter of Russia, 35 Tflops, 288 <u>CPU</u> used, total computing time ~2400 hours, total data volume ~6,5 Tb.

Characteristics of	13,2 km	6,6 km	2,2 km	COSMO-CLM model configuration
experiments	domain	domain	domain	- <u>Runge-Kutta integration scheme</u> with
Total points over	145*355 =	228*525 =	300*500 =	5 th advection order
domain	51475	119700	150000	-Height based <u>hybrid Gal-Chen</u>
Horizontal	0.12 ⁰	0.06 ⁰	0.02 ⁰	coordinate
resolution, degrees (~km)	(~13,2 km)	(~6,6 km)	(~2 <i>,</i> 2 km)	- Prognostic TKE-based scheme for turbulence, 2.5 order closure
Time step (seconds)	120	40	20	- Spectral nudging technique included
Number of model levels in atmosphere	40	40	50	- <u>Ritter-Geleyn</u> radiation scheme -Tiedtke schemes for deep and shallow
Number of model soil layers	9	9	9	convection - Precipitation formation by a bulk
Initial and boundary conditions	ERA- Interim (~0.75 ⁰)	COSMO- CLM 13,2 km	COSMO- CLM 6,6 km	microphysics parameterization - <u>Output every 1 hour</u> for surface fields (see List of main output variables) ∠

List of main output variables:

- Sea level pressure (hPa)
- □ Air temperature 2 and 10 m (⁰C)
- □ Potential air temperature 2 and 10 m (⁰C)

Verification: first results, for 2014

Nº of	Verification area
area	

□ Sensible and latent heat flux (W/m²)

		stations inside domain
1	Okhotsk sea, adjacent	124
	water areas and	
	coastal areas	
2	Sakhalin island, strait	50
	of Tartary, southern	
	part of Okhotsk sea	
3	Northern part of the	6
	eastern Sakhalin coast	

Verification of modelling results for three areas and two different model resolutions (~13.2 and ~6.6 km)

'Box-plots' for comparison of observations and modelling results over three areas (1 - 3) for three-month periods of 2014 for <u>temperature</u> (T, °C), <u>wind speed</u> (U, m/s) and <u>maximal wind gusts</u> (U_a>10 m/s; m/s). Wind gusts, Wind gusts, Wind speed, Wind speed, Temperature, $U_{g} > 10 \text{ m/s},$ $U_{g} > 10 \text{ m/s},$ RMSE, ⁰C mean error, m/s RMSE, m/s mean error, ⁰C mean error, m/s RMSE, m/s

Mean values of temperature (°C) and wind speed (m/s) for three-month periods of 2014 by model (color) and observations (color markers). The *marker size* is proportional to the *absolute mean error* of the model.

Temperature, ⁰C January-March

Number of

meteorological

Conclusion and perspectives

- Verification of created dataset indicated that the COSMO-CLM model has reproduced many processes on different spatio-temporal scales adequately.
- Statistical assessments for different horizontal resolutions revealed an certain improvement of model results on higher resolutions, especially on <u>~2,2 km</u>.
- Primary synoptic analysis has shown two main types of synoptic patterns leading to extreme winds over the region.
- **Next:** full and comprehensive analysis of the reproduction quality
 - **Next:** statistical estimates of many fields, extreme values and climatological trends