

CSIC

UCL

Université catholique de Louvain

PAN

Scientific Quality Assessment and Report for gridded data ECVs in the CDS

Prepared by:

Consiglio Nazionale delle Ricerche, Italy

With the support of the service team:

DLR ETHZ LMU UCL UVB CLU-SRL CSIC IOP-PAN ENEA

Presented on behalf of the management team by: John Coll, Maynooth University

What an ECV is ?

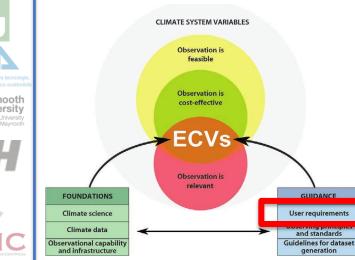


Fig. 2. Schematic of the ECV concept: knowing existing climaterelevant observing capabilities, climate datasets, and the level of scientific understanding of the climate system are the foundations (lower-left box) necessary for selecting the ECVs from a pool of climate system variables. In addition, guidance is needed to make practical use of the ECVs (lower-right box): user requirements capture the data quality needs of science, services, and policy; climatespecific principles guide the operation of observing systems and infrastructure; and guidelines facilitate the transparent generation of ECV data records. The latter address the availability of metadata, provisions for data curation and distribution, and the need for quality assessment and peer review.

SEPTEMBER 2014 BATS | 1433

Essential is the keyword

- → Should follow user requirements Want to make a step ahead ...
- → In turn should be "used" by users potentially diverse

Information on the use you can make out of it

TABLE I. The essen	tial climate v	variables (for qualifying details, see GCOS 2010a).
	Surface: ^a	Air temperature, wind speed and direction, water vapor, pressure, precipitation, surface radiation budget
Atmospheric	Upper air:⁵	Temperature, wind speed and direction, water vapor, cloud properties, Earth radiation budget (including solar irradiance)
	Composition:	Carbon dioxide, methane, other long-lived greenhouse gases, ^c ozone and aerosol supported by their precursors ^d
	Surface: ^e	Sea surface temperature, sea surface salinity, sea level, sea state, sea ice, surface current, ocean color, carbon dioxide partial pressure, ocean acidity, phytoplankton
Oceanic	Subsurface:	Temperature, salinity, current, nutrients, carbon dioxide partial pressure, ocean acidity, oxygen, tracers
Terrestrial		River discharge, water use, groundwater, lakes, snow cover, glaciers and ice caps, ice sheets, permafrost, albedo, land cover (including vegetation type), fraction of absorbed photosynthetically active radiation, leaf area index, above-ground biomass, soil carbon, fire disturbance, soil moisture

Overall objectives and needs

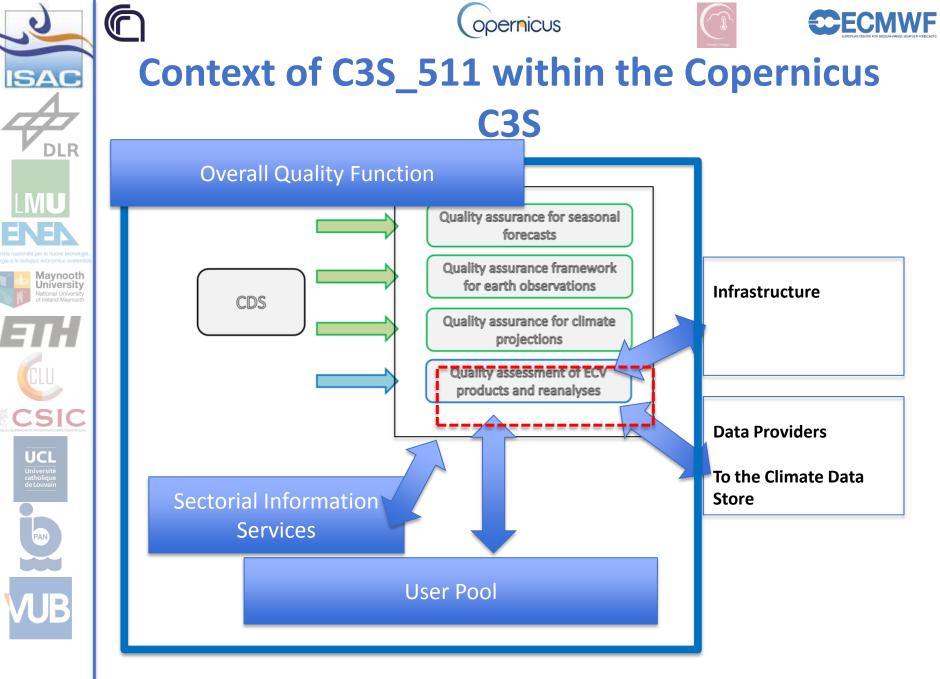
Uniform assessment of all ECVs (Atmosphere – Ocean – Land) Every dataset has its own evaluation, done in different ways

Provide synthetic and appealing reports on quality and applicability *Evaluation doesn't include "quick" information for users*

Work adaptively to ensure:

- interdependence and evolving content of the CDS.

Implement scientific evaluation "User Oriented" on:

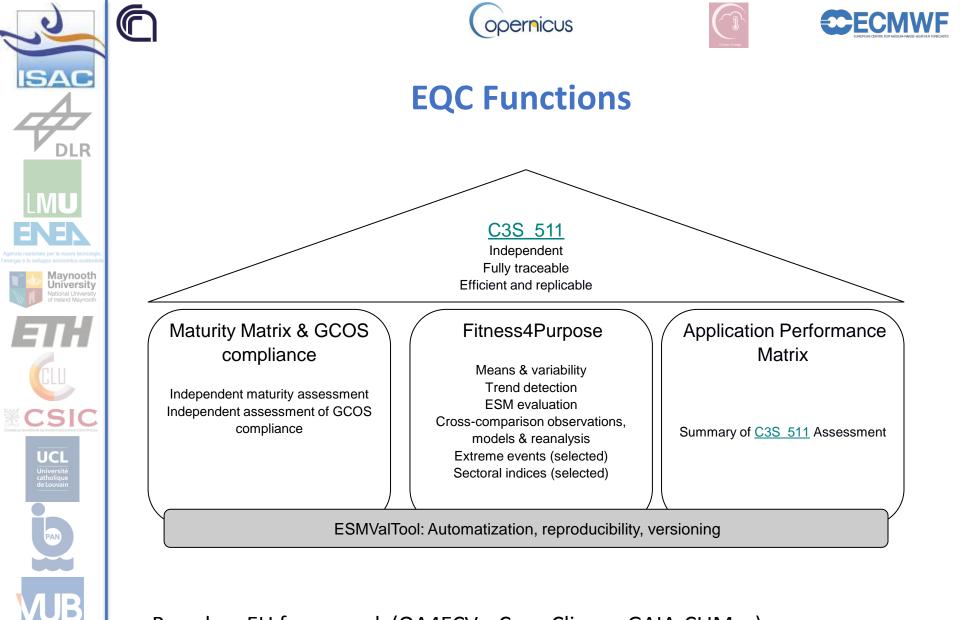

- "climate applicability" of observationally-based products and datasets
- adapted to the needs of the CDS users

Efficient and replicable procedure based on the ESMValTool software :

- high scientific quality assessment standard
- solid framework with automated system

Provide scientific evaluation of a <u>multi-thematic</u> data store based on:

- wide know-how and experience with data evaluation and analysis.



Consortium Roles

- **CNR**: lead contractor, coordinates **Atmosphere and Ocean** ECV assessments
- DLR, ETH, LMU, UCL, CNR implementation of the quality assessment functions and tools
- NUIM: lead the Surface Atmospheric ECV assessments
- ETHZ: lead the Land ECV assessments
- ENEA: lead the thematic assessment and contribute to ocean and atmosphere assessment
- CICS: ocean ECV assessments for sea level and current
- IO-PAN: Ocean ECV assessments for carbon
- VUB: land ice variables and lakes together with
- UCL : Sea Ice

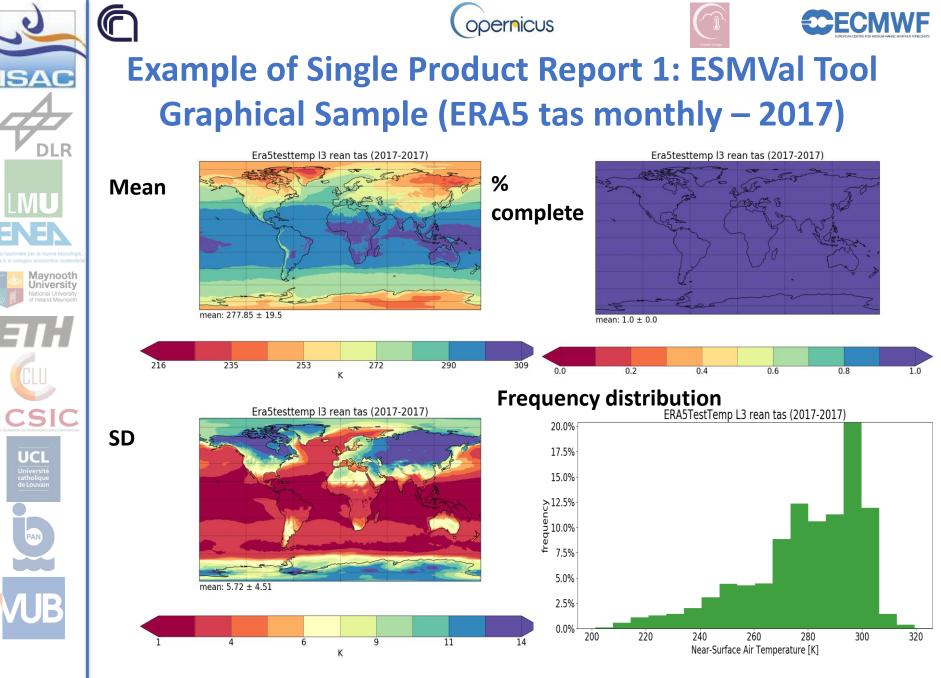
Based on EU framework (QA4ECVs, Core-Climax, GAIA-CLIM ...)

11/10/2018

C3S General Assembly 2018

Single Product Assessment

2-STEPS


Qualitative Assessment gathering from C3S_51

- Available metadata and product quality
- Maturity Matrix compared to C3S 51
- Compliance with reference to GCOS target requirements
- Recommendation with eventual indications for further improvements.

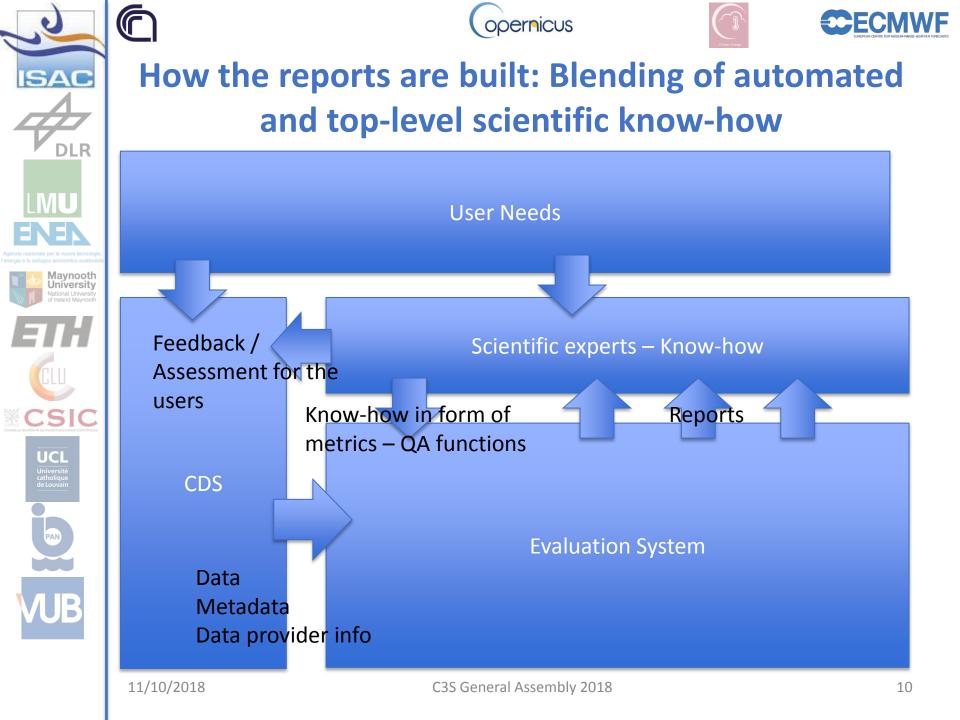
Quantitative assessment for the Fitness4Purpose

- (a) Use diagnostics to calculate means and variability, trends and plots
- (b) Assess the suitability of the ECV data records for all fitness for purpose use cases,

Summary assessment based on the application performance matrix resuming results

11/10/2018

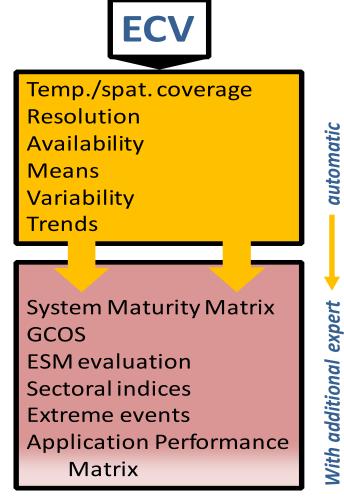
C3S General Assembly 2018



Example of Single Product Report 2: Report Structure Overview

- 1. Product Description: Data format, resolution, coverage etc
- 2. Overview on dataset: Completeness & coverage latitude, longitude, time
- 3. Fitness for Purpose: Product-specific SMM evaluation (modified CORE-CLIMAX template)
- 4. Overall evaluation: APM evaluation –GCOS requirements met?
- 5. References: White (grey) Literature support for evaluation?

11/10/2018



How the reports are built: ESMValTool

user input

Multi Product Assessment

Multi-product is intended as:

- The same variable from different providers (e.g., surface temperature from ERA-5, HadCRUT ... or Ozone from CAMS, C3S 312a).
- Different variables composing the same ECV (e.g., aerosol optical depth, aerosol profile).

(a) Identify products and sources for the same ECV to be included in a multi-product assessment based upon intended service provision via the CDS
(b) Select relevant use cases
(c) Include information from Single Product Assessments for those ECV products applicable
(d) Use the ESMValTool template from WP2 and include multi-product specific diagnostics
(e) Perform analysis with the ESMValTool

Gather from Single-Products used for assessment

Maynooth University

CSIC

UB

UCL

Thematic Assessment

Multi-product assessments

Single-Product assessments

Relevance of the evaluated ECV products for climate science and climate

Focus on fundamental physical aspects of the climate system and climate change (GCOS / IPCC / WCRP / CEOS)

Due to the dependencies on outcomes of the first annual services and to the expected interactions with ECMWF and users C33S_511 provides a tentative plan In SC 1: Adapt the same QA framework and automated

system for replicability

Update the thematic tasks

Which observational data

Atmospheric ECVS	Products	CDS products	Timing
TOA Radiation Budget	TOA SW	ERA5	2017
	TOA LW	ERA5	2017
Wind air speed	U,V	data	2017
Temperature	Т	ERA5 & C3S_311a	2017
Water vapour	Q	ERA5 & C3S_311a	2017
cloud properties		ERA5	2017
aerosol	AOD	C3S_312a & CAMS	2017
	SSA	C3S_312a & CAMS	
	ALH	C3S_312a & CAMS	
	Extinction profile	C3S_312a & CAMS	
Carbon dioxide	CO2 Total column	C3S_312a	2017
	CO2 Surface	C3S_311a	
Methane	CH4 Total column	C3S_312a	2017
	CH4 Vertical profile		
Long-lived GHGs	CFC	C3S_312b	2018
	N2O		
Ozone	Stratospheric	ERA5 & C3S_312a & C3S_311	2017
	Tropospheric	ERA5 & C3S_312a & C3S_311	2017
	Total Column	ERA5 & C3S 312a & C3S 311	2017

Ocean ECVs	Products	CDS products	Timing
Sea Surface Temperature		ORA5 & C3S_312a	2017
Surface salinity		ORA5	2018
Surface currents		ORA5	2018
Ocean surface stress		ORA5	2018
Ocean surface heat flux		ORA5	2018
Sea level		ORA5 & C3S_312a	2017
Sea state		ERA5	2018
Subsurface temperature		ORA5	2017
Subsurface salinity		ORA5	2018
Subsurface currents		ORA5	2017
Sea Ice		ERA5 & C3S_312a	2017
Transient Tracers	CFCs	C3S_312b	2018
Inorganic carbon		C3S_312b	2018
Ocean Colour		C3S_312b	2018

Surface ECV	Products	CDS products	Timing
Wind air speed	U,V	ERA5 & C3S_311a	2017
Precipitation	Rainrate	ERA5 & C3S_311a	2017
Temperature	Т	ERA5 & C3S_311a	2017
Water Vapour	Q	ERA5 & C3S_311a	2017
Surface Radiation Budget	Surf LW	ERA5	2017
	Surf SW	ERA5	2017

Land variables	Products	CDS products	Timing
Soil moisture	surface, deeper-layer	ERA5 & C3S_312a	2017
Lakes		C3S_312b	2018
Snow		ERA5	2017
Glaciers		C3S_312a	2017
Ice sheets & Ice Shelves		C3S_312b	2018
Permafrost		C3S_312b	2018
Albedo		C3S_312a	2017
Land cover		C3S_312b	2018
FAPAR		C3S_312a	2017
LAI		C3S_312a	2017
Fire		C3S_312b	2018
Ice Caps		C3S_312b	2018

UCL Université catholique de Louvain