#### **European Meteorological Society Annual Meeting 2018**

# WMO Competency Framework – what does it mean for the changing role of Weather Forecasters?

Gerald Fleming Chair, OPAG on Public Weather Services, WMO

WMO - Public Weather Services, WDS

## **WMO Competency Framework**

Developed to underpin training and continuing professional development of all Meteorologists

- Basic Document Public Weather Service or "Bench" Forecaster
- Subsidiary, or specialist competencies
  - Weather Broadcasters and Communicators / Media Liaison
  - PWS Disaster Prevention and Mitigation Advisor
  - Innovation and Improvement in Meteorological and Hydrological services and products.





What is a Competency?

"The ability of an individual to do their job properly"

"The ability to do something successfully and efficiently"

"All the related knowledge, skills, behaviours and attributes that form a person's job"







A Competency is about more than just knowledge!

It is about the <u>application</u> of knowledge to the tasks required in carrying out one's job.

Related to behaviour – personality – people skills – ability – context.





- Competency Framework will be a "WMO Recommended Practice"
- Not obligatory, but stronger than just "Guidance"
- WMO is the regulatory body for all of world meteorology, so these Competency Frameworks should be applicable across both the public and private sectors
- Considerable work yet to be done within WMO
  - Developing underlying guidance material
  - Incorporating these ideas into training curricula



Let's look at the basic PWS Forecaster Competency

Are we talking here only about Meteorologists? No!

In some countries the training to be a forecaster does not necessarily encompass degree-level training in Meteorology.

Should have completed the Basic Instruction Package in Meteorology, or an equivalent.





- "taking into consideration"
  - □ The nationally-defined PWS areas of responsibility;
  - Meteorological and hydrological impacts on society;
  - Meteorological and hydrological user requirements, local procedures and priorities.

These can be thought of as "filters" for specific contexts. Not all of the competencies will apply to each specific context.





### **First top-level Competency**



Analyse and monitor continually the evolving meteorological and/or hydrological situation

- Everything starts with observation
- Develop an understanding of what is happening and why
  - Analyse and interpret data....
  - Monitor weather parameters and validate current forecasts....
  - Evaluate the need for amendments / updates....



### **Background knowledge and skills**



#### Analyse and monitor continually the evolving meteorological and/or hydrological situation

- Understanding of synoptic, dynamical and physical meteorology
- Application of theory and methods
- Visualise / conceptualise in multiple dimensions
- Influence of topography, land/sea boundaries etc
- Proper interpretation of observation data



#### **Second top-level Competency**



- Forecast meteorological and hydrological phenomena and parameters
- Moving into the future ... Implies an ability to understand and correctly interpret NWP output
- Again needs an understanding of what will happen, and why
  - Forecast weather phenomena.....
  - Ensure that forecasts follow appropriate formats, protocols....
  - Spatial consistency....



## **Background knowledge and skills**



- Forecast meteorological and hydrological phenomena and parameters
  - Diagnostic and prognostic skills
  - Knowledge of NWP methods, including EPS
  - Knowledge of NWP strengths / weaknesses
  - Make reasoned estimate of the forecast; realise other evolutions
  - Understand the likely impacts



#### **Third top-level Competency**



#### Warn of hazardous weather

- Fundamental task of all NMHSs
- Warnings need to be timely, allied to thresholds.
  - Forecast hazardous weather phenomena.....
  - Ensure that warnings follow appropriate formats, protocols....
  - Spatial and temporal consistency....



### **Background knowledge and skills**



#### Warn of hazardous weather

- Knowledge of dissemination and production systems
- Knowledge policies, procedures and criteria for warnings
- Understand the likely impacts



#### **Fourth top-level Competency**



#### Communicate meteorological and hydrological information to internal and external users

- Make sure that all communication protocols are adhered to
- Can explain clearly, deal with uncertainties, deliver briefings etc



## **Background knowledge and skills**



#### Communicate meteorological and hydrological information to internal and external users

- Presentation skills
- Knowledge of appropriate protocols
- Awareness of specific user needs, and how they use weather information
- Awareness of the application of weather and climate data to human activities



## **Fifth top-level Competency**



# Ensure the quality of meteorological and hydrological information and services

- Can handle 24/7 rostered duties
- Can self-manage workload
- Good team-worker
- Accepts change readily
- Learn from experience continually try to improve



#### **Table of Top Level Competencies**



| Personnel engaged in operational         | Weather broadcasters and                 | PWS Advisers supporting                    | Persons engaged in ElfEC                 |
|------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|
| forecasting                              | communicators                            | disaster prevention and                    | the development and delivery             |
|                                          |                                          | mitigation and other user                  | of meteorological and                    |
|                                          |                                          | activities.                                | hydrological products and                |
|                                          |                                          |                                            | services                                 |
| Analyse and monitor continually the      | Maintain awareness of the evolving       | Monitor continually the evolving           | Maintain awareness of developments in    |
| evolving meteorological and/or           | meteorological and/or hydrological       | meteorological and/or hydrological         | technology, and science which facilitate |
| hydrological situation.                  | situation, updated forecasts and         | situation, updated forecasts and           | the development and improvement of       |
|                                          | conditions.                              | warnings, and impacts of anticipated       | products and services to meet user       |
|                                          |                                          | conditions.                                | requirements.                            |
| Forecast meteorological and              | Assemble meteorological and              | Develop and adopt procedures and           | Develop applications, products and       |
| hydrological phenomena and               | hydrological information that meet user  | services to meet user needs and facilitate | services that meet user requirements.    |
| parameters.                              | needs for communication and delivery.    | impact assessments.                        |                                          |
| Warn of hazardous meteorological and     |                                          | Develop and manage relationships with      | Develop and manage relationships with    |
| hydrological phenomena.                  |                                          | Disaster Prevention Mitigation users and   | users and other stakeholders.            |
|                                          |                                          | other stakeholders.                        |                                          |
| Communicate meteorological and           | Communicate meteorological and           | Communicate meteorological and             |                                          |
| hydrological information and potential   | hydrological information and potential   | hydrological information and potential     |                                          |
| impacts to internal and external users.  | impacts via broadcast and other media.   | impacts to internal and external users and |                                          |
|                                          |                                          | engage in outreach activities.             |                                          |
| Ensure the quality of meteorological and | Ensure the quality of meteorological and | Ensure the quality of meteorological and   | Ensure the quality of meteorological and |
| hydrological information and services.   | hydrological information and services.   | hydrological information and services.     | hydrological information and services.   |
|                                          |                                          |                                            | N/ AN                                    |



#### **Partnerships and Collaboration**

- Forecasters now need to work in partnership with users, especially other government agencies and stakeholders (emergency response, mapping agencies, transport, public, etc).
- Data sharing among different agencies and departments will be vital (demographic, GIS and mapping, economic etc).
- Understanding of Impacts will come partly from experience, partly from improved modelling of vulnerabilities and exposure.





18



#### **Partnerships and Collaboration**



- Implication Forecasters need to know something of the business and the concerns of their users.
- Forecasters need to be able to anticipate the possible impacts of different weather scenarios on the business of their users.
- Why can the users not do this for themselves?
- A Fundamental Problem often the users do not know what they want!





#### **Future shape of forecasting**



- A growing demand for advice, home and abroad, as impacts from extreme weather events become more prevalent as vulnerabilities increase and climate warms
- An appreciation that the demand for more customer relevant, accurate and consistent forecasts across all timescales
- A shift towards impact, multi partner, impact-based services to aid better decision making, globally



#### **Future Role of the Forecaster**

- If the Forecaster does not do this work who will?
- Forecasters now have access to information about possible evolutions of weather over the next 10-14 days.
- Their ability to understand and contextualise this information will be key to their success.
- Users will also need training!
  - > Especially Emergency Management







#### The information value pyramid... towards higher value



- Applied wisdom-advice → insight, environmental intelligence
- Science, numerical models, reports, national accounts, assessments, policies
- Analyses, forecasts, warnings, outlooks; climate record; discovery metadata
- Environmental observations: land, oceans, water, atmosphere, space



éireo

#### **Future Role of the Forecaster**

How best to arrange this in practice?

Specialised Meteorologists guiding "bench" forecasters?

#### OR

"Bench" forecasters acquiring specialisations?





## Thrusts for the Role of the Forecaster

- Forecast production
  - moving to oversight and intervention in a decision making system.
- Client oriented
  - moving to the seamless integration of client relationships within the full forecast system.
- Science and Development
  - moving to the seamless application of science results to meet client requirements...
    - · But science should not be subdued by the Service functions
- Learning
  - moving to forecasters with appropriate skills in a system of continuous skill renewal
- Organization
  - moving to an adaptively managed system to minimize societal risks to high impact weather.





## In Summary.....

- **MET** éireann
- Next decade will see a fundamental re-think of how meteorological and oceanographic enterprise operate globally and nationally
- Moving further from the 'Man against Machine ' paradigm to embrace 'Man leveraging Machine'...
  - Emergence of AI (e.g. IBM Watson and the likes)
- Moving toward seamless multi-scale socio-environmental intelligence ... surveillance, prediction, analytics
- Emergence of the role of the private sector ---- from competitors to collaborators
- Role of academia in R&D and in preparing our current and future workforce...



## Conclusion



- What does it mean for the future?
  - Automation will continue to increase
  - Expertise of professional meteorologists will continue to be required where humans add value
    - high impact weather, support to emergency, interpretation, research and development, etc....
  - New products and services will need to be developed
- This will change the way we operate (24/7 operations)
  The mode of operations has to change....





World Meteorological Organization

Weather • Climate • Water

## Thank you for your attention

www.wmo.int