
Universidad de La Laguna

Sensitivity study of Boundary layer cloud modelling using WRF

Juan C. Pérez¹, Albano González¹, Juan P. Díaz¹, Francisco Expósito¹ and Manuel Luis¹ 1. Universidad de La Laguna (ULL), Canary Islands, Spain

In this work, a detailed study of the ability of limited area numerical models to characterize boundary layer clouds is performed. Particularly, a sensitivity study was carried out to evaluate the ability of WRF model simulations in reproducing the properties of marine stratocumulus clouds in the North Atlantic subsidence regime. To this end, a wide set of experiments was designed to analyze both, the physical parameterizations implemented in the model to simulate the different processes, such as PBL, microphysics and radiation schemes, and the model configuration, that is, initial and boundary conditions, vertical resolution or vertical nesting.

Simulations were conducted for some case studies and a region located to the North of the Canary Islands was selected to compare model results with observational data retrieved from satellite sensors. In particular, data from the A-Train satellite constellation have been used (multispectral radiation from MODIS sensor, radar data from CloudSat platform and the attenuated backscatter from Calipso lidar instrument). From these measurements, information such as the cloud vertical structure or cloud radiative properties were derived and used to evaluate the strengths and weakness of the different parameterizations to model these kind of clouds.

3. WRF Simulations

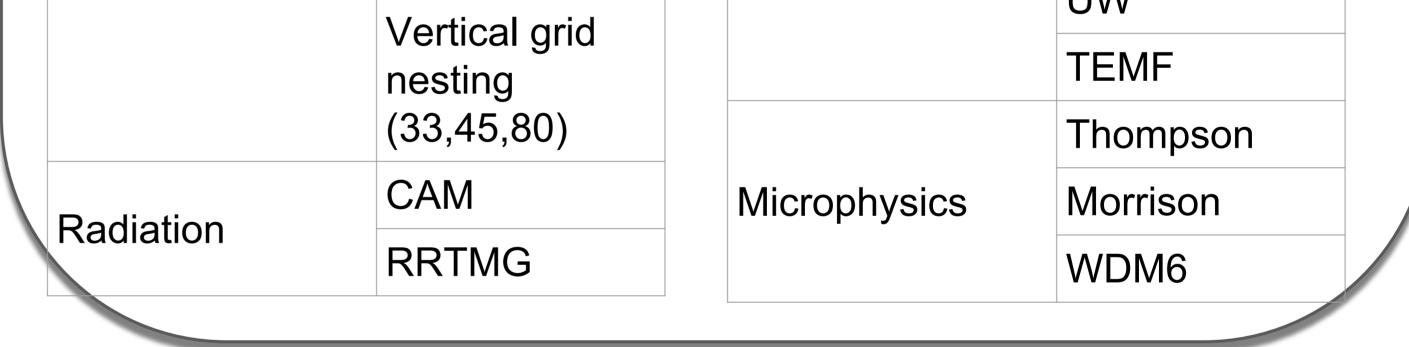
- Version 3.9.1
- 3 nested domains (27, 9 and 3 kms). Results from innermost domain

- 48 hours simulations (24 hrs. spin-up)
- Cumulus parameterization in outermost domain

4. Experiments

Several experiments were conducted to evaluate the skills of WRA model to simulate the vertical structure of Marine Boundary Layer cloud formed in the North Atlantic subsidence region.

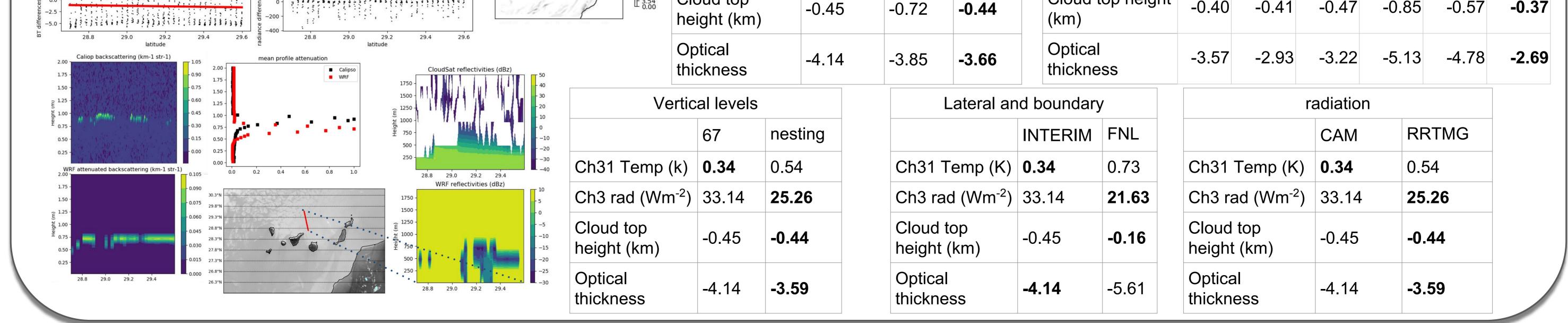
Special attention was paid to the number of vertical levels considered. Several configurations were tested increasing the total number of levels up to 100, with higher resolution in the lowest levels, and the new option of vertical grid nesting (WRFv3.8) was also tested.


Parameterization	Options	Parameterization /Strategy	Options		
/Strategy Lateral and boundary input	Intorino		YSU/ MYJ		
	Interim				
	FNL		QNSE		
	33	PBL/surface	MYNN2/3		
	60	layer	ACM2		
	80		BOULAC		
	100				

CCCM - CERES CALIPSO CloudSat MODIS

- Cloud Height
- Optical thickness

Selected dates:


- A-train data available for the region of interest (Canary Islands)
- Low level clouds

5. Postprocessing

To compare the results of WRF simulations with satellite data, the satellite simulator software included in the NASA-Unified Weather Research and Forecasting (NU-WRF) model was used. From it, visible and thermal radiances of MODIS were simulated, so as radar reflectivity factor from Cloudsat platform and total attenuated backscatter at 532 nm as measured by Calipso in the same vertical resolution as provided by the different sensors (Peters-Lidard et al., 2015)

6. Results			Microphysics			Planetary Boundary Layer							
MODIS channel 31	MODIS channel 3			Thomp	Morris.	WDM6		acm2	bou	myj	qnse	uw	ysu
	277.8 2222.2 166.7 111.1 55.6 0.0	WRF simualted tau	Ch31 Temp (K)	0.34	-0.28	0.67	Ch31 Temp (K)	0.69	0.56	0.85	-0.66	-0.50	1.22
5.0 5.0 K	400 -	S S S S S S S S S S S S S S S S S S S	Ch3 rad (Wm ⁻²)	33.14	59.74	30.0	Ch3 rad (Wm ⁻²)	0.39	23.23	23.13	64.16	58.40	12.47
VIC 2.5 - WO	200 -	4 14.16 10.62 7.08	Cloud top				Cloud top height						

Grupo de Observación de la Tierra y la Atmósfera

All logos and trademarks belong to their respective owners.

Contact information: Juan C. Pérez jcperez@ull.edu.es

Projects:

- CGL2015- 67508-R (MCIU)
- CLI05 (CajaCanarias)

