Exploring the impact of changes in observation times on the homogeneity of temperature series: rainfall day vs. calendar day

Alba Llabrés-Brustenga⁽¹⁾ Marc Prohom⁽¹⁾ Peter Domonkos

alba.llabres@gencat.cat

Servei Meteorològic de Catalunya

EMS Annual Meeting: ECAMC 2019 | 9–13 September 2019 | Copenhagen, Denmark

Servei Meteorològic de Catalunya

meteo.cat

OVERVIEW

- Background and motivation of the experiment
- Methodology
- Homogeneity analysis: ACMANT V4
- Conclusions

Ensuring quality and homogeneity in climate series is a crucial step to be undertaken when analyzing climate trends and variability.

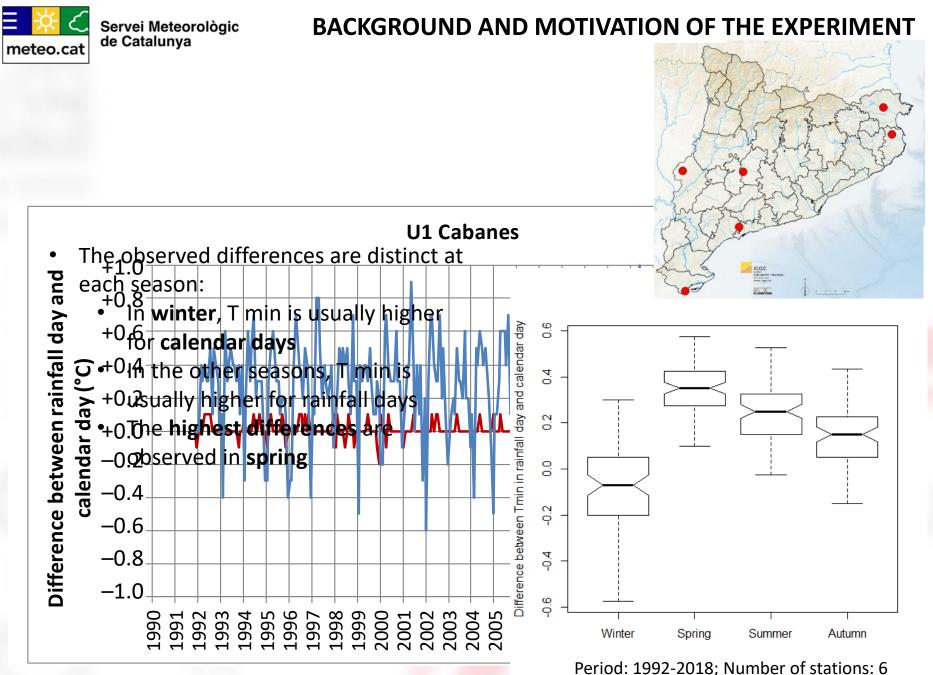
Several sources of inhomogeneity are well known and documented (Aguilar et al. 2003):

- Station relocation
- Instrumental exposure
- Change of instrumentation
- Environmental changes in station surroundings
- Observing practices: change of observer, maintenance routines, observing times

Most of the breaks in temperature series are associated to the first four sources, while little evidences are found for the last one.

BACKGROUND AND MOTIVATION OF THE EXPERIMENT

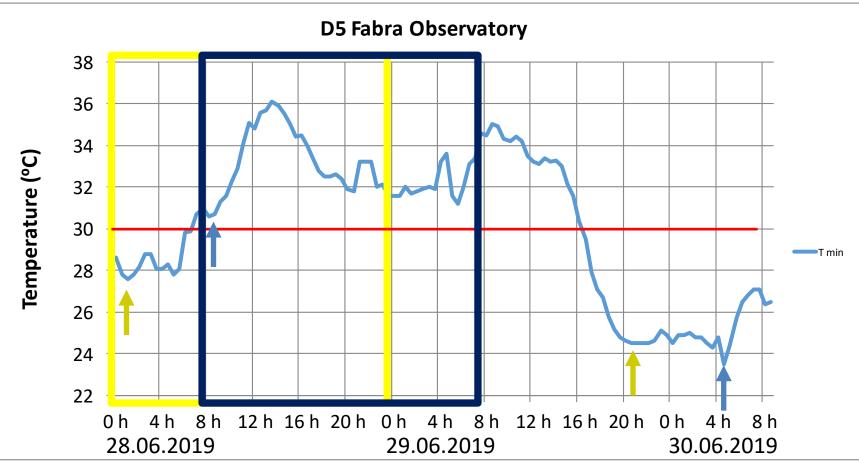
In recent years, AWS emerge as the main source of surface climate data, and gradually manned stations are replaced by them.



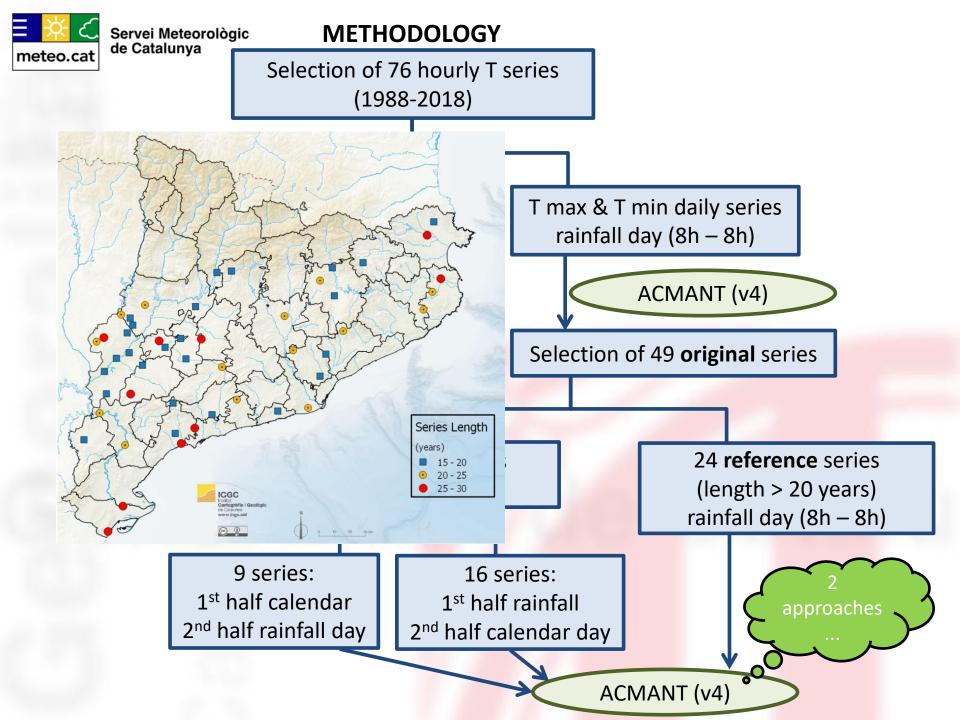
IMPACT

- Change of instrumentation (largest one)
- Relocation (in some cases)
- Change in observing times: rainfall days (8h 8h) vs. calendar days (0h 24h)

Size of the breaks is not large enough? Homogeneity testing/procedure is not sensitive enough?



Monthly mean differences in temperature


meteo.cat

BACKGROUND AND MOTIVATION OF THE EXPERIMENT

T min	Rainfall day (8h-8h)	Calendar day (0h-24h)		
28.06.2019	30.6	27.6		
29.06.2019	23.5	24.5		

Hourly minimum temperature

METHODOLOGY

- Introduction of 1 artificial change in the middle of the series period for the series with less than 20 years
- 64% of the modified series have the temperature of the rainfall day in the 1st part of the period and temperature of the calendar day in the 2nd part. The other 36% start with calendar day and end with rainfall day

Execution of ACMANT in 2 approaches:

- Temperature in rainfall day (8h-8h)
 Transition from calendar to rainfall day
 Transition from rainfall to calendar day
- A. 1 execution with the whole set of 25 modified series + 24 unmodified series

B. 25 independent executions with only 1 modified series + 48 reference series

Homogeneity analysis: ACMANT V4

T max: none of the forced transitions are detected

T min: some of the forced transitions are detected both for approach A and B

	A. (49 series)	Inserted transition (25 series)		n	da	ay T min 🔹 Probabili		uccess index: CSI=6/(6+5+19) = 0.20 ity of detection: POD=6/(6+19) = 0.24 rms: FAR=5/(6+5) = 0.45			
	Detected		6			5					
	Not detected		19			19					
	B. (25 series) Detected		rted sitio 6	tion 5				A. Detected transition (6 series)	B. Detected transition (6 series)	Detected transition rainfall day (49 series)	
	Not detected		19			Nº of brea	aks	6	6	78	
Detected inserted A. B.						N ^o of negative breaks		0	1	39	
	transiton					Minimum magnitude		0.17	0.06	0.01	
Rainfall to calendar (16) 3 4					Mean ma	gnitude	0.39	0.36	0.44		
Calendar to rainfall (9)			3	2		Maximum	n magnitude	0.69	0.64	1.65	

CONCLUSIONS

- Change in observing times has an important effect in monthly temperature, especially in mean minimum temperature, that follows an annual cycle
- The process of homogenization is slightly affected by the presence of periods with different observing times
- Detection of inhomogeneities caused by changing observing times is extremely difficult: forced transitions could be detected when the magnitude of the break was sufficient and it was not masked by other inhomogeneities.
- The size of the break for a transition from manned to automatic weather station are of moderate magnitude and they can be masked by other sources of inhomogenities.

Future work:

- Creation of different benchmarks: analysis of multibreak detection
- Homogeneity check by HOMER
- Correction analysis and trend impact

Mange tak!

