

METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Exceptional weather and sea level events in changing climate: experiences on providing user-relevant information to support nuclear power plant safety in Finland

Kirsti Jylhä, Ulpu Leijala, Carl Fortelius, Antti Mäkelä, and Milla Johansson Finnish Meteorological Institute (FMI), P.O. Box 503, FI-00101 Helsinki, Finland Contact: kirsti.jylha@fmi.fi

Background and motivation

Energy technologies not resulting in direct greenhouse gas emissions include renewable energy sources and nuclear energy (NE). In Finland in 2018, ~ 1/3 of electricity was produced with NE, and its portion of total energy consumption was 17% ^[1] (Fig. 1). An issue in using NE is its safety: the release of radioactive substances from a nuclear power plant (NPP) to the environment must be prevented with high reliability.

Extreme weather in changing climate

Examples of recent and current research topics include sea-effect snowfall (Fig. 2), freezing rain (Fig. 3), compounding heavy precipitation and high sea level (Fig. 4), and thunderstorm occurrence(Fig. 5).

Fig. 1. Left: Share of total energy consumption in Finland in 2017–2018. Middle: Electricity supply in Finland in 2017–2018. Right: Sites of the Finnish NPPs in operation (LO, OL) or in licensing phase (FH).

- Extreme weather and sea level events affect the design principles of NPPs, may hamper normal NPP operation, or endanger a safe shutdown.
- Probability estimates of exceptional weather and sea level conditions in the current and future climate are needed for:
 - the determination of the design basis for new power plant units
 - the Probabilistic Risk Assessment of new and existing NPPs
 - periodic safety reviews of existing NPPs

Weather-related risks for nuclear power plants

• Ice, frazil ice, organic material in sea water

Fig. 2. 3-hour accumulated precipitation (mm/h) as observed by weather radar during a national record-breaking snowdrift of 73 cm on 8 Jan 2016.^[4]

Fig. 3. Change in the annual mean number of elementary freezing rain events exceeding 5 mm/6 hr by 2071-2100 under RCP8.5.^[5]

Extreme sea level

Research topics during recent years

New research topics (2019)

Fig. 10.

pressure

coast.

Sea level (cm, iMW)

systems to

Simulated low-

identify extreme

1971-2016 1988-2018 1985-2015

1982-2012 1979-2009

1976-2006 1973-2003

sea levels on

the Baltic Sea

- → blockage of intakes of cooling sea water
- Snow, frost, freezing rain
 - ⇒ blockage of intakes of i) ventilation air and ii) emergency diesel generator combustion air
- Lightning > power supply, control systems, external power transmission grid
- Floods due to high seawater or heavy rain
 - ⇒ safety equipment, especially electric power supply and control systems
- High atmospheric temperature, high air enthalpy
 - \implies ventilation and room cooling systems
- **High wind speed** (also a factor in high sea water level): => external power transmission grid connection, air intakes

Main challenges in providing user-relevant information to support nuclear safety in Finland

- Major nuclear accidents are typically low-probability-high-consequence events
- Probabilities of occurrence of extremely rare events, unseen in the past 100 years of observations and corresponding to return periods of thousands or even millions of years, are needed.
- The ongoing climate change alters the frequencies and severity of the events in the future.
- Weather forecasts and warnings issued to the public, or to authorities, are not designed with the needs of nuclear power production in mind.

Improving forecasts of extreme weather and sea level events

- Short-term forecasts of extreme weather and sea level events and conditions may allow NPP operators to take appropriate action, provided that they can be issued in time.
 - A workshop between experts in nuclear power production and in weather prediction

Research to support nuclear safety in Finland

- FMI has examined extreme weather, climate and sea level events potentially posing risks to NPPs since 2007 ^[2], currently in the PREDICT project within the SAFIR2022 program ^[3].
- **Aim**: to develop and maintain research expertise and methods needed for assessing probabilities of occurrence of safetyrelevant single and compound extreme events.
- **Research topics** Feedback and enquires from the power companies designing and running the Finnish NPPs, and the Radiation and Nuclear Safety Authority in Finland (STUK).

Acknowledgements

We acknowledge the funding from the State Nuclear Waste Management Fund through SAFIR2018 and SAFIR2022, the Finnish Nuclear Power Plant Safety Research Programmes 2015-2018 and 2019-2022, respectively, and from the Finnish Meteorological Institute (FMI). All researchers at FMI contributing to PREDICT at FMI are acknowledged.

on 9 Oct 2019

- to decide upon a set of relevant events to be predicted and
- to deliver recommendations for weather services in support of safe and economic nuclear power production

References

- ^[1] Official Statistics of Finland (OSF): Energy supply and consumption, Appendix figures 7 and 17.
- http://www.stat.fi/til/ehk/2018/04/ehk_2018_04_2019-03-28_kuv_007_en.html, http://www.stat.fi/til/ehk/2018/04/ehk_2018_04_2019-03-28_kuv_017_en.html
- ^[2] Jylhä K. et al. 2018: Recent meteorological and marine studies to support nuclear power plant safety in Finland. Energy, 165 (A), 1102-1118, https://doi.org/10.1016/j.energy.2018.09.033
- ^[3] https://en.ilmatieteenlaitos.fi/predict; http://safir2022.vtt.fi/
- ^[4] Olsson T. *et al.* 2018: Sea-effect snowfall case in the Baltic Sea region analysed by reanalysis, remote sensing data and convection-permitting mesoscale modelling. Geophysica, 53(1), 65-91. http://www.geophysica.fi/pdf/geophysica_2018_53_olsson.pdf
- ^[5] Kämäräinen M. *et al.* 2018: Estimates of present-day and future climatologies of freezing rain in Europe based on CORDEX regional climate models. Journal of Geophysical Research: Atmospheres, 123, 13291-13304. https://doi.org/10.1029/2018JD029131
- ^[6] Räihä et al. 2019: Co-occurrence of heavy precipitation and high sea level. Personal communication.
- ^[7] Ukkonen P. & Mäkelä A. 2019: Evaluation of machine learning classifiers for predicting deep convection. *Journal of Advances in Modeling* Earth Systems, 11, 1784-802. https://doi.org/10.1029/2018MS001561
- ^[8] Pellikka H. et al. 2014: Recent observations of meteotsunamis on the Finnish coast. Natural Hazards, 74, 197–215. DOI: 10.1007/s11069-014-1150-3.
- ^[9] Leijala U. *et al.* 2018: Combining probability distributions of sea level variations and wave run-up to evaluate coastal flooding risks. Nat. Hazards Earth Syst. Sci., 18, 2785-2799, DOI: 10.5194/nhess-18-2785-2018.
- ^[10] Pellikka H. et al. 2018. Future probabilities of coastal floods in Finland. Continental Shelf Research, 157, 32-42. DOI: 10.1016/j.csr.2018.02.006.
- ^[11] Björkqvist J.-V. et al. 2019: WAM, SWAN and WAVEWATCH III in the Finnish archipelago the effect of spectral performance on bulk wave parameters, J. Oper. Oceanogr., DOI: 10.1080/1755876X.2019.163323

