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BACKGROUND

Copenhagen: 1,200/km? (Metro)
High Density Urban Areas | Copenhagen: 4,400/km? (City)
Singapore: 7,804/km?

Hong Kong: 7,400/km?

Hong Kong: 130,000/km? (City, Mong Kok)

The impact of traffic air pollution on public health at high

density urban areas is significant.
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OBJECTIVES

Practical modelling-mapping method to support decision-

Practical mode"ing-mapping method making in urban planning to address air pollution issues.
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It's are a bit too pointy at the top, I think ...
Yesterday I realized that I actually love round shapes!

After 10 years of work and 30,000 slaves dying the émhitect
had hoped for an more euphoric reception

T o /[




Furagsan Maisaralasiael Sadlaly

CRSIMARITRETY

of Sings

METHODOLOGY Mass transfer between urban canopy layers

Multilayer urban canopy model is
developed based on:

+ Exchange velocity estimation:
Layer structure was characterized by
canopy drag lengths in the urban
canopy layer.

* Mass conservation: Box model was
applied among sub-layers within
street canyons.

Urban canopy layers and the governing equations per layer

Cn+1 = 0 (Assumption)

Layer | A =1ugy(C; — C)(1 = A4p;)
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Traffic emission

where,

uy = Mass exchange velocity
4, = Site coverage ratio

Ay = Frontal area density

C = Pollutant concentration

l = Integral length scale
q = traffic-related pollutant emission flux
A, = Ratio of the pollutant emission area to the total lot area

N = Number of layers
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METHODOLOGY Multilayer urban canopy structure
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where,
h = The depth of layer

4, = Site coverage ratio

Ay = Frontal area density
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METHODOLOGY Mass transfer between urban canopy layers

Mass exchange velocity across urban canopy

0.2
layers
0.16
Friction velocity (u*) (Yuan et al., 2017):
« 012 == e~
uw =012 - U, :;“’ B s
where, # e
u* = Friction velocity 0.04
U,.;= Mean wind speed at the top of roughness sub-layer z* s
0 0.1 0.2 03 04 3. 05 0.6 0.7 08 0.9 1 1.1
Validation 0.75

Measurement data: @ AVA data (Hong Kong Planning Department, 2008)

. . 0.65

Bentham and Britter model (Bentham and Britter, 2003): s & All data (Tominaga el al, 2008)

os : i Modelling results: —— Urban canopy model
Uc A\ :‘-'i' 0.45
Uref - 2 Uref ‘;‘ 0.35
0.25
. 0.15 s .
The new urban canopy model matches the experimental data
(AVA data and AlJ data) well, P value = 0.9559 0.05
0 0.2 0.4 0.6 08 A 1 1.2 1.4 16
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VALIDATION

The present UCM for
pollutant dispersion was
validated by comparison
with CFD simulations
that were performed in
ANSYS Fluent software
with the Shear-Stress
Transport (SST) k-w

turbulence model.

CFD simulation configurations
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SST k-w model has been validated in previous study (Yuan et al., 2014), in which
CFD simulation results were cross-compared with wind tunnel data provided by

Niigata Institute of Technology (Tominaga and Stathopoulos, 2011).



VALIDATION Parametric cases

y Uniform height Non-uniform height
60m -

Building height 1 (m) 60 90 55 50 45 40 35

Building height 2 (m) 60 90 65 70 75 80 85
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CFD simulation results

a. Normalised concentration (Y_Z plane)
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Case 7a(H=135,85m) Case 7a(H=135,85m)

b. Mormalised concentration X-Y plane (20 m above ground)

0008s00 150001 300001 450001 500001 750001 R00001 100800 I' b4

325,20

Es_“
i)

[}

1=

=

-3

o :

‘20" 200 "20 200 ‘' 'z 200 20’ 200 "20
Case2(H=90m)

Distance (m)

Case1(H=60m)

'n

20 25,
5)20 b.
f

Distance (m)

Distance {m)

‘20" 200 20 200 20 ‘20 200 20 200 ‘20
Case 5a(H=45,75m) Case 5b (H=45,75m)




Cross-comparison between CFD results and UCM

100 T 100

Multilayer urban canopy model for buildings with - Case 1: H=60m - Case 2: H = 90m |
uniform height £ - —CFD £ 50 —CFD

% ---UCM %; ---UCM

B A o | [ UCM_roof| 3 40!
With building height of 60m, the concentration of NO, - - =

20

obtained from UCM is evidently smaller than CFD results, due ' g .
to assumption in the UCM that there is no pollutant present 00 0_"2 Oj4 0j6 08 1 192 Od 0T2 0f4 0?6 0?8 1L 112
above building roof. Normalized concentration of NO2 Normalized concentration of NO2

To include the effect of roof concentration, the UCM is revised
through setting the concentration above rooftop as that from

the CFD simulation (UCM_roof).

Case 1(H =60 m) Case 2 (H =90 m)
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Cross-comparison between CFD results and UCM

Multilayer urban canopy model for buildings with

non-uniform height

With larger building height variance, the UCM overestimates the
pollutant concentration compared to the CFD simulations, because
the current multilayer UCM does not consider horizontal emission

advection.

UCM_adv:

. A
Gle = ugy (C1 = C)(1 = Ap1) + Ugan ﬁclud(i—l)(ci—l - C)(1 = Api-y)

Ac .
= udi(C,: - Ci+1)(1 - Api) + uadviﬁCi,l =23,..,N

where,
Ac
Ar

Ugq,1 = Averaged horizontal wind speed in the i-th layer

= Cross section of each layer

= Lot area

Height, m

Height, m

100

80
60 |
40 1
207

0
0 02 04 06 08 1

100

80+
60
40§
20|

0
0 02 04 06 08 1

Case 4: H=50m, 70m

~ —CFD
N ---UCM

\N
-
~

1.2
Normalized concentration of NO2

Case 6:H=40m, 80m
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. Case 7: H=35m, 85m

1.2
Normalized concentration of NO2
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Vertical Air Polluta
Dispersion Potential {(m/s
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3D Mapping of vertical dispersion potential Mapping of site coverage ratio and average
of traffic emission by UCM for Singapore vertical dispersion potential by UCM for
Singapore. Urban areas with different A o T2 200 o
pollutant dispersion issues are highlighted. 1 ou-oo0 N
oos -oos
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