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Abstract

Surface wind is an extremely difficult parameter to predict, particularly in the
complex topography of the Alps. Due to several important processes happening at
sub-kilometer scale, even high resolution Numerical Weather Prediction models
such as COSMO-1 still present substantial biases. To address this, a wide range
of statistical post-processing methods are used. Recently, methods based on Deep
Learning have emerged as a new solution and are now actively developed at
many weather services, including MeteoSwiss. At the same time, efforts are
made to obtain accurate representations of surface wind speed up to a few hours
ahead by integrating all available information in real-time, an approach known as
nowcasting.

With the aim of seamlessly combining nowcasting and post-processing approaches
for surface wind speed predictions, we developed a Deep Learning probabilistic
post-processing model that is also able to integrate real time observations, and
developed a new metric, the Similarity Index, for this purpose. The Similarity Index
is a way to estimate the correlation of surface wind speed between two locations,
based on their position and geomorphological setting, and can be used to chose the
best available observation to be used at any point in space at any given time, and
weigh that observation in a way that mimics geostatistical interpolation methods.
The proposed methodology yields improved forecasts of wind speed where both
systematic and random errors are reduced, thanks to the post-processing and
nowcasting components respectively. In a second phase, we implemented a state-
of-the-art explainability framework for machine learning, SHAP, and presented
how it can be used to get insights into the model and build trust in the results.
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Riassunto in italiano

I venti di superficie sono un parametro estremamente difficile da prevedere, in
particolare nella complessa topografia delle Alpi. A causa di diversi importanti
processi che avvengono su scale inferiori al chilometro, anche modelli numerici
di previsione ad alta risoluzione come COSMO-1 presentano ancora errori sig-
nificativi. Per ovviare a questo problema, esistono svariati metodi di correzione
statistica (post-processing). Recentemente, metodi basati sul Deep Learning sono
emersi come una nuova soluzione, e sono attualmente in sviluppo presso molti
servizi meteorologici, incluso MeteoSvizzera. Al contempo vengono fatti sforzi
per ottenere rappresentazioni accurate dei venti di superficie fino ad un orizzonte
temporale di poche ore, integrando tutte le informazioni disponibili in tempo reale,
con un approccio noto come nowcasting.

Nell’intento di combinare nowcasting e post-processing per le previsioni dei venti
di superficie, abbiamo sviluppato un modello di post-processing con Deep Learning
probabilistico che è anche in grado di integrare osservazioni in tempo reale, e a
tale scopo abbiamo sviluppato una nuova metrica, il Similarity Index. Il Similarity
Index è un modo di stimare la correlazione del vento di superficie tra due località,
basandosi sulla loro posizione e il tipo di topografia nella quale si trovano, e può
essere usato per scegliere la miglior osservazione disponibile per una previsione a
un qualsiasi luogo e in qualsiasi momento, dando poi un peso a detta osservazione
in un modo analogo ai metodi di interpolazione geostatistica. La metodologia
proposta risulta in migliori previsioni dei venti di superficie, per i quali sia gli errori
sistematici che quelli aleatori sono ridotti, grazie rispettivamente alle componenti
di post-processing e nowcasting. In una seconda fase, abbiamo implementato
un sistema all’avanguardia per spiegare i modelli di machine learning, SHAP, e
presentato come questo possa essere usato per ottenere informazioni sul modello e
aumentare la nostra fiducia nei suoi risultati.
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1Background

1.1 Motivation

The accurate representation of surface wind is valuable for a wide range of appli-

cations. Wind extremes are among the most destructive natural hazards, and the

prediction of surface winds is a tool for civil protection, as it is used to develop

a reliable early warning system, which is an essential measure of risk reduction

(Sättele et al., 2016). With the ongoing transition to renewable energy, decision

making in the energy industry is also dependent on skillful weather forecasts,

notably for grid load balancing and power trading (Usaola et al., 2004). Wind

power generation in particular is strongly affected by the high spatial and temporal

variability of surface wind. Other speci�c applications include runway operations

in aviation (Kuikka, 2009), planning in the transport sector or estimates of snow

accumulation for avalanche services (Lehning and Fierz, 2008). In all these cases,

the availability of accurate wind surface analyses and forecasts is crucial even

within a very short period of time. This motivates the development of nowcasting

systems, whose goal is to produce high spatial and temporal resolution analyses

and forecasts of weather developments for present time (analysis) and the next few

minutes up to typically a maximum of six hours ahead. This is done by combining

all available information (measurements and the latest model forecasts) in real

time, with a special attention on computational ef�ciency due to operational time

constraints. Compared to other meteorological parameters such as temperature,

cloud cover or precipitation, nowcasting surface wind is a more challenging task,

due to its high variability combined with the lack of spatially continuous obser-

vations, and there is currently no established methodology for this task. Finally,

quantitative information on the uncertainty of a prediction is becoming increasingly

valuable. It promotes informed decision-making and allows the user to choose its

own relevant probability threshold (Fundel et al., 2019), it facilitates and even

improves decision-making (Joslyn and LeClerc, 2013) and can increase the thrust
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in forecasts (LeClerc and Joslyn, 2015). For these reasons, there's a growing need

to develop probabilistic forecasts.

1.2 Limitations of Numerical Weather

Prediction (NWP)

Wind forecasts are generally produced by numerical weather prediction (NWP)

models, such as COSMO-1. NWP models solve Navier Stokes and thermodynamic

equations on a discrete grid, thus producing physically consistent forecasts. This is

computationally feasible because of several simplifying assumptions, but it results

in forecast errors. Speci�cally, model structural errors include the missing or poor

representation of sub-grid processes (due to a too coarse grid) and inaccuracies with

the numerical scheme (Nicolis et al., 2009). Furthermore, NWP models suffer from

high sensitivity to initial conditions due to the chaotic nature of the atmosphere

(Vannitsem, 2017), and boundary conditions can also induce signi�cant errors

(Nicolis, 2007). In the last decades, NWP models have improved considerably

under several key aspects. Better physical parameterisations have reduced the

errors resulting from model simpli�cation, the development of complex data

assimilation systems improved model initialization and the ongoing adoption of

ensemble forecasts allows to estimate the forecast uncertainty (Bauer et al., 2015).

Despite all these progress, NWP model forecasts still display substantial biases. In

particular, shortcomings in horizontal resolution and physical parameterization

make it impossible for operational NWP models to resolve complex processes that

occur on �ne spatial scales and characterize surface wind �elds. These are related

to a combination of sub-grid local �ow patterns resulting from crest speedup,

�ow channelling, �ow blocking, updraft and downdraft zones, or �ow separation

downwind of a ridge crest (Lewis et al., 2008). In other words, surface wind

�elds are strongly in�uenced by both topography and land cover, meaning that

in a complex topography such as the one of the alpine area NWP models are

particularly prone to errors. Another important drawback of NWP, particularly in

the nowcasting range, is the latency between the availability of the model output

and the initialization time, which results from the computational delay and the

time lag between each update cycle of the model (for instance, the COSMO-1
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model currently updates every 3 hours and takes about an hour to compute). This

implies that any forecast is inevitably based on old information, and this is critical

in rapidly changing conditions.

1.3 Post-processing techniques

The de�ciencies of NWP models described in the previous section induce two kinds

of error: systematic and random. Both errors require post-processing in order to im-

prove the forecast quality, respectively by correcting systematic biases and adapt the

dispersion in the case of ensemble forecasts. A wide range of statistical techniques

is available for this purpose (D. S. Wilks, 2011; Vannitsem, D. Wilks, et al., 2018).

The vast majority of approaches consists in statistically relating the NWP model

output and other additional data, such as topographic descriptors or seasonality, to

observations. The �rst applications of these techniques were based on simple linear

regression, e.g. the well known Model Output Statistics (MOS). Nowadays there's

a bloom of post-processing techniques, particularly for probabilistic forecasts, as

illustrated by Vannitsem, Bremnes, et al. (2020) in a comprehensive review. Most

of the new developments are based on Machine Learning (ML) techniques, and

Arti�cial Neural Networks (ANNs) are proving to be suitable for post-processing.

Rasp and Lerch (2018) found that ANNs can signi�cantly outperform traditional

post-processing techniques, while being less computationally demanding. The

authors highlight that ANN can better incorporate non-linear relationships in a

data-driven fashion, and thanks to their �exibility are more suited to handle the

increasing amounts of model and observation data. Promising results were also

obtained by Weingart (2018) using a similar technique. Cervone et al. (2017)

also illustrate how these approaches can be ef�ciently implemented on massively

parallel supercomputers. ANNs have also been combined with other statistical

techniques such as Bernstein polynomials (Bremnes, 2020). More sophisticated

ANNs, such as Convolutional Neural Networks (CNNs) allow a better use of spatial

information. Grönquist et al. (2020) used CNNs to improve forecasts of global

weather. Schär (2019), Höhlein et al. (2020), and Veldkamp et al. (2020) used

CNNs for spatial downscaling of surface wind �eld. A process-speci�c application

was proposed by Chapman et al. (2019), with the goal of improving the prediction

1.3 Post-processing techniques 3



of atmospheric rivers1. Dai (2020) implemented Generative Adversarial Network

based on CNNs to produce physically realistic post-processed forecasts of cloud

cover. It is important to understand that there is no single best solution for post-

processing of NWP forecasts. Depending on the application, different approaches

may prove more suited. For example, Höhlein et al. (2020) and Dai (2020) used

CNNs by interpreting post-processing as animage-to-imageproblem because the

target was a spatially continuous �eld, but this is often not the case, particularly

for surface wind. In addition, an important distinction must be made between

local and global approaches. Local approaches are used to post-process a forecast

at a single location, thus a site-speci�cmodel is used. On the other hand, global

approaches aim to be able to make prediction at any point in space using a single

model with generalizing capabilities.

1.4 Surface wind nowcasting

While the post-processing of surface wind forecasts is done both with a local and

global approach, research in surface wind nowcasting has focused on the former.

This was driven primarily by the domain of wind power forecasting, where the prob-

lem is interpreted as time-series prediction. Jung and Broadwater (2014) presents

an overview of the existing research in short-term wind forecasting with a local

approach. In recent years, several techniques in the family of arti�cial intelligence

are emerging in short-range weather forecasting, with promising results (Papazek

et al., 2020). Compared to local approaches, there are no established methods for

surface wind nowcasting at any point in space. The currently operational wind

nowcasting system at MeteoSwiss is a global deterministic model that incorporates

a three-steps algorithm combining an ANNs, statistical regression and a spatial

interpolation scheme (Buzzi et al., 2019). It is an example of how methodologies

from post-processing and local nowcasting can be combined.

1An atmospheric river is a narrow corridor or �lament of concentrated moisture in the atmosphere
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1.5 Aim and outline

ANNs for wind post-processing and nowcasting are actively developed at many

weather services, and this results in incremental improvements while also raising a

wide range of interesting research questions. Therefore, on one hand there is the

importance to follow up on recent efforts, on the other the liberty to investigate

different aspects of these new approaches. Drawing from these two aspects, this

work aims to: develop a ANN-based post-processing tool that is also suitable for

nowcasting, capable of correcting the climatological bias of a model while also

integrating real-time information to reduce random errors; implement state of the

art explainability techniques, in order to evaluate and interpret our models based

on prior knowledge. The rest of this report will be structured as follows: Chapter 2

will give a brief introduction to machine learning, with a focus on concepts speci�c

to deep learning, in order to facilitate readers that are not familiar with these

techniques; Chapter 3 presents datasets and methodologies used in this project;

in Chapter 4 we will discuss our results. We will evaluate the performance of

our models, both in a general way and with a focus on nowcasting, then present

several examples of how model explainability techniques may be used. Finally, in

Chapter 5 we will draw our �nal conclusions and present a brief outlook on further

developments in the future.

1.5 Aim and outline 5





2Key concepts of Deep

Learning

This chapter presents a brief introduction to Deep Learning, including an overview

of some key concepts of Machine Learning used in this study. Machine Learn-

ing refers to a wide range of statistical methods that use computer algorithms

to improve automatically through experience, and Deep Learning is one of its

branches, where ANNs are used. This section does not aim to give a complete

and formal introduction to Deep Learning, but rather a simpli�ed summary for

non-practitioners. For a complete review, see e.g. Goodfellow et al. (2016) or

Chollet (2017).

2.1 Optimization

The central problem of most machine learning models is tomeaningfully transform

data. That is, transforming the input data into representations (different ways to

look at data) that are meaningful with respect to the expected output. A model

�nds the best way to transform data by minimizing a cost function, often called loss

and noted L , which determines how well the model is performing with respect to

the true solution. This cost function is chosen according to the task at hand, e.g. in

the case of regression the Mean Absolute Error or the Mean Squared Error are often

used. Since it is not always possible to �nd an analytical solution to minimize L ,

the key idea of machine learning is to �nd the best approximate solution by using a

recursive optimization algorithm: a model is exposed to known examples of input

and expected output, and after each exposure the model parameters are updated

such that the transformation applied to the input data results in a representation

that is closer to the expected output. An important intuition about how the learning

occurs, is that there's no creativity in �nding the correct transformations: during

optimization the algorithm is merely searching through a pre-de�ned space of

possibilities called the hypothesis spaceof the model, using the loss as a guidance

7



Fig. 2.1.: A generic framework used for most machine learning applications. The auto-
matic improvement of the model occurs through the optimizer, which updates
the model parameters after each exposure to input and true target (a training
step), based on a feedback signal obtained by the loss functionL .

signal. A generic framework that applies to most machine learning applications is

represented in �gure 2.1.

In the case of deep learning, thetransformation of the input data occurs between

successive layers of representation. The term "deep" stands for the idea of having

many layers, which form the core structure of an ANN. What determines the

transformation applied by each layer is the layer's parameters or weights, and the

learning for an ANN means essentially �nding the correct combination of weights

for each layer. To perform the adjustments, ANNs typically adopt gradient-based

optimization algorithms:

! t+1 = ! t � � rL (! t ) (2.1)

where the weights ! are adjusted in the negative direction of the gradient of L ,

with � representing the learning rate, which regulates the magnitude of each

update. In most cases, weights are initialized randomly, and after each exposure

to examples of data (a training step, represented by equation 2.1) they get closer

8 Chapter 2 Key concepts of Deep Learning



to convergence, i.e. the point at which the model parameters stop adjusting

signi�cantly. This iterative learning process is often referred to as gradient descent,

and it is highly dependable on our ability to �nd good optimizers of highly non-

convex loss functions. An important issue with gradient descent, in addition to

speed, is the risk of incurring in local minima and saddle points of the gradient.

An optimizer with good convergence should be able to avoid remaining stuck in

local minima and eventually reach a global minima. Several gradient-descent

optimization algorithms have been proposed, see Ruder (2017) for a complete

overview.

2.2 Over�tting and the bias-variance tradeo�

When a model learns from a set of training data, the ultimate goal is that the algo-

rithm will also perform well when exposed to new data that was not encountered

during its learning phase. Over�tting occurs when the model parameters adjust too

closely to the training data, learning examples "by hearth" instead of abstracting

the relevant patterns. In other words, an over�t model unknowingly learned some

of the random noise (unrepresentative variation) in the data as if it represented

the underlying function. Consequently, it will have a weaker generalizing capabil-

ity and perform poorly with unseen data. To evaluate whether a trained model

over�ts, one usually tests it on an independent set of data for which the labels are

known. The opposite problem, under�tting , comes when a model's approximation

of the function is too simplistic. Another central problem of supervised learning1,

intimately related to over�tting, is the bias-variance tradeoff. It can also be seen

as a conceptual framework used to �nd the right balance between over�tting and

under�tting. The bias error comes from erroneous assumptions in the learning

algorithm. An example is presented in Fig. 2.2, where a linear model is used

to approximate a set of points that evidently do not show a linear relationship.

High bias can cause an algorithm to miss the relevant relations between features

and target outputs (under�tting). The variance is an error from sensitivity to

small �uctuations in the training set (e.g. �gure 2.2). High variance can cause an

algorithm to model the random noise in the training data, rather than the intended

1Supervised learning is the machine learning task of inferring a function from labeled training
data.
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Fig. 2.2.: A simpli�ed representation of the bias-variance tradeoff. Above, the change
in a model's error based on its complexity; below, a visual representation of a
model's �tting to a training dataset. Ideally, one wants a model that is complex
enough to model the underlying function, but not too complex to learn the
unrepresentative variation in the training data: this is the model that falls in the
optimum range.

outputs (over�tting). The tradeoff is in that a model either captures the variability

in its training data or it generalizes on unseen data, and it's impossible to do both

simultaneously. The solution is to look for an optimum balance.

2.3 Arti�cial Neural Networks

2.3.1 Network architecture and hyperparameters

A neural network model is typically de�ned by its architecture and hyperparameters.

The architecture essentially determines how the model neurons are connected with

one another, and what happens during every transformation on each layer of the

model. A well-known class of ANN is the fully-connected neural network, which

consists of a series of layers that connect every neuron in one layer to every neuron
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in the next layer. Since every layer only connects to the next without forming

cycles2, starting from the input layer and ending with the output layer, this kind of

architecture is also characterised asfeed-forward. The degree of complexity of such

models is largely determined by the total number of parameters, which in turn

depends on the number of hidden layers and the number of neurons in each layer.

These and other elements that need to be set by the user (in contrast with the

values of the model parameters or weights, which are often randomly initialized)

are called hyperparameters. Other examples of hyperparameters include: the

learning rate � , the activation functions, the number of epochs and the batch size.

The learning rate, as already seen in section 2.1, determines the magnitude of

corrections at each training step. A large� will result in a faster convergence, but

with the risk of missing the right convergence pathways and incur in exploding

gradients. On the other hand, a too small value can excessively slow down the

training, with the risk of incurring in local minimas. Activation functions determine

the output of each neuron for a given input or set of inputs, and are typically what

allows ANN to model complex non-linear functions, since they provide a non-linear

response for each neuron. A widely used activation function is the Recti�ed Linear

Unit (ReLu), de�ned as f (x) = max(0; x) where x is the input of a neuron. In

other words, a neuron activates if the input is positive and deactivates if the input

is negative. The number of epochs represents how many times the model sees

the entire training dataset during the training phase. The batch size represents

the number of examples that are used for each training step, i.e. the number of

examples for which the gradient on the loss L is computer with respect to the

model's weights.

2.3.2 Regularisation

Regularisation techniques are a variety of modi�cations applied to the learning

algorithm used to prevent over�tting. Among the most popular is Dropout (Srivas-

tava et al., 2014). The idea is to randomly deactivate some neurons during training,

with a speci�c probability and repeatedly for each training iteration, such that the

model optimizer won't update the weights associated with those neurons. Dropout

2When an ANN is designed such that layers form cycles it is called a Recurrent Neural Network,
which is opposed to feed-forward architectures
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can also be regarded as ensemble learning, as different explanatory pathways are

combined to result in the �nal model. As it will be discussed in section 2.3.2, this

aspect is of particular importance for probabilistic modelling. Another well-known

regularisation technique is early-stopping (Prechelt, 1998). Fundamentally, one

keeps track of the learning curve of the model during training, both for the training

and validation dataset, and stops the training if the validation error stays the same

or increases, while the training error continues to decrease.
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3Data and methods

3.1 Observational dataset

The observational data used in this study comes from multiple sources, as shown

in Table A.1. The selected dataset consists of hourly mean observations of several

meteorological parameters including wind speed, wind direction and sea-level

pressure, and the hourly maximum for wind gust. The 739 measurement stations

are distributed over the alpine area (see Fig. 3.1), covering several kinds of geo-

morphological settings, and for this study were considered observations over a four

years period, ranging from April 2016 to April 2020. In total, excluding missing

values, this adds up to roughly 20 millions wind observations. The measurement

networks originally included a larger number of stations, but some of them were

excluded after conducting a quality assessment that is described in Section 3.7.

Additionally, we considered a set of automatic daily weather classi�cation schemes

introduced at MeteoSwiss by Weusthoff (2011), described in Table 3.1.

Tab. 3.1.: CAP9: a daily weather classi�cation with 9 classes derived by a principal
component analysis and subsequent clustering of ERA40 reanalysis, based on
mean sea level pressure in the alpine region.

Wheather classi�cation description Code Frequency

NorthEast, indifferent 0 0.23
West-SouthWest, cyclonic, �at pressure 1 0.16
Westerly �ow over Northern Europe 2 0.13
East, indifferent 3 0.13
High Pressure over the Alps 4 0.11
North, cyclonic 5 0.09
West-SouthWest, cyclonic 6 0.07
High Pressure over Central Europe 7 0.05
Westerly �ow over Southern Europe, cyclonic 8 0.03
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Fig. 3.1.: Location of all 739 selected stations over the Alpine area, represented with its
topography.

3.2 NWP dataset

The NWP model used as input to train our model is COSMO-1, a state-of-the-art

regional model operated by MeteoSwiss. The model runs with a deterministic

and non-hydrostatic con�guration, and has a high horizontal resolution of 1.1km.

The archive of predictions covers about the same spatial and temporal domain of

the observational dataset, and consists of hourly values of several meteorological

parameters, including wind speed, wind gust and wind direction. In addition to

wind related parameters, we considered the boundary layer height as a predictor

for our model, as well as differences in pressure between speci�c locations (Lugano

and Basel to account for North-South gradient, Geneva and Güttingen for West-East

gradient).
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As a baseline for the evaluation of our model we used COSMO-E, the 21 members

ensemble con�guration of COSMO model, that has an horizontal resolution of

2.1km. The choice of using COSMO-E instead of COSMO-1 was motivated by

the need for consistency in the objective quanti�cation of the model performance:

deterministic and probabilistic forecasts are dif�cult to compare.

The best solution would have been to use COSMO-1E (the ensemble con�guration

of COSMO-1), but due to major adjustments on the model's physical parameteriza-

tions during the pre-operational phase, the homogeneity of the archived data, an

important quality for a machine learning training dataset, had been compromised.

The issue of frequent model changes, violating the assumption that the error char-

acteristics remain constant over time, and the proposed solutions are discussed in

Vannitsem, Bremnes, et al. (2020).

3.3 Topographical descriptors

The geomorphological setting of a location explains a lot of the sub-grid scale

variability of surface wind speed. Therefore, we need a way to characterize the

landscape con�guration in a way that is meaningful with respect of the process

of interest. Using a Digital Elevation Model (DEM) as a starting point, there

are two approaches to derive meaningful representations of topography that are

useful for the prediction of surface wind speed: to feed the raw DEM data to

an ANN incorporating convolutional layers, which then automatically abstracts

different levels of representation during the learning phase; to derive topographical

descriptors manually, based on domain knowledge, performing what's known

in machine learning as feature engineering. Both approaches were evaluated by

Schär (2019), and the latter approach is shown to be preferable both in terms

of forecast performance and computational ef�ciency. In addition, it facilitates

the interpretation of the model using domain knowledge. A comprehensive set

of topographical descriptors was considered in this study, namely: South-North

derivative, East-West derivative, Slope, Aspect, Valley Norm and Direction, Ridge

Norm and Direction, Topographic Position Index (TPI), Sx. As shown in Chapter

4, only a small subset of these topographical descriptors was included in our �nal

model.
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3.3.1 Directional Derivatives

The South-North and East-West derivatives are simply calculated using centered

�nite-difference formula as:

dNS (x; y) �
DEM (x; y + 1) � DEM (x; y � 1)

2� y
; (3.1)

dEW (x; y) �
DEM (x + 1; y) � DEM (x � 2; y)

2� x
: (3.2)

The different spatial scales where calculated by applying a Gaussian smoothing

�lter with the corresponding window size to the DEM before computations.

3.3.2 Slope

The Slope is de�ned as the magnitude of the DEM gradient at any given location

and can be derived from the directional derivatives:

slope(x; y) =
q

dEW (x; y)2 + dNS (x; y)2: (3.3)

3.3.3 Aspect

The Aspect is de�ned as the direction of the DEM gradient at any given location

and can be derived from the directional derivatives:

aspect(x; y) = atan2

 
dEW (x; y)
dNS (x; y)

!

: (3.4)
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3.3.4 Topographical Position Index (TPI)

The TPI is a simple metric used to describe landform types such as hilltops, exposed

ridges, valley bottoms etc. (Weiss, 2001). It's de�ned as the altitudinal difference

between a considered location and the mean elevation of its surroundings (which

is de�ned here using the general expression of a convolution1):

TP I (x; y) = DEM (x; y) �
X

i

X

j

M (i; j )DEM (x � i; y � j ); (3.5)

where M is a mean �lter kernel of size i � j . The extent of the convolution kernel

around (x; y) determines the scale of the TPI.

3.3.5 Valley Index and Ridge Index

This Valley Index was proposed by Schär (2019) to describe valley shapes and

their main orientation in an attempt to account for wind channeling effects. The

derivation consists in convolving the DEM with valley-like kernels of varying size

(to account for different valley widths) and shape (to account for different valley

type, e.g. U-shaped or V-shapes). The kernels are applied to every pixel of the DEM

using the Fast Fourier Transform, with varying orientations (0-360 degrees with 1

degree increment) and then combined to create the Valley Index.

V alleyIndex(x; y) =
X

i

X

j

V(i; j )DEM (x � i; y � j ); (3.6)

where V is the valley-shaped kernel of sizei � j . Additionally, the magnitude of

the Valley Index was multiplied by the sine and cosine of the valley orientation to

result in two descriptors, one for each component of the valley orientation. The

Ridge Index follows the same principle of the Valley Index, but the kernels are

1Convolution is the process of adding each element of a matrix to its local neighbors, weighted by
a kernel. It is extensively used in image processing.
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reversed in order to highlight ridges instead of valleys. The different spatial scales

are determined by the size of the convolution kernel.

3.3.6 Sx

The Sx represents the maximum slope among all imaginary lines connecting a given

pixel with all the ones lying in a speci�c direction and up to a maximum distance

(Winstral et al., 2017). Sx is a proven wind-speci�c terrain parameterization

capable of differentiating such slopes based on given wind directions, therefore

adding �ow-dependency to the model input space. The derivation of the Sx is

formulated as:

Sxaz;dmax (x; y) = max

 

tan � 1

 
DEM (xv; yv) � DEM (x; y) + height

[(xv � x)2 + ( yv � y)2]0:5

!!

; (3.7)

where az is the azimuth of interest, dmax is the maximum distance (radius), (x; y)

the considered pixel coordinates and(xv; yv) the set of all pixels coordinates lying in

an area delimited by dmax and a cone centered aroundaz. A fast Python routine was

developed speci�cally for this task, which makes use of Bresenham's line algorithm

to select (xv; yv). The height parameter was set to 10 meters, consistently with the

standard height for wind measurements. The Sx was calculated every 5°, for a

total of 72 azimuths ranging from 0° to 355°.

3.3.7 Model-DEM height di�erence

Although not purely based on high resolution DEM, an additional descriptor was

considered that represents the difference in height of the topography used by the

NWP model and the height of the high resolution DEM.
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3.4 Temporal descriptors

The daily cycle is the main driver of thermal winds, and the annual cycle largely

governs the frequency of occurrence of weather regimes that determine particular

�ow situation e.g. Bise, Foehn. To account for this, the models were provided with

temporal descriptors. Since both the hour of the day and the day of the year are

circular variables, they required an encoding using sine and cosine functions to

express them in two components:

cos(h
2�
24

) ; sin(h
2�
24

); (3.8)

cos(d
2�
365

) ; sin(d
2�
365

); (3.9)

where h is the hour of the day and d is the day of the year.

3.5 Integration of real-time information

The key idea of nowcasting is to use all the latest available information, typically

NWP forecasts and measurements (e.g. from station data or satellite imagery), to

produce an accurate analysis of weather parameters and extrapolate a forecast

up to a few hours ahead. The use of real-time measurements as predictors for

our models raises two questions, considering that the model must be able to

make prediction for ungauged locations2. First, which measurement is chosen as

predictor at any given location and at a given time; second, how relevant that

measurement is for the �nal prediction. These are common problems for spatial

interpolation, where the goal is to use point sampled measurements to generate

2we designate as "ungauged locations" points in space where no measurements are available
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spatially continuous data. To do this, nearly all methods share the same general

estimation formula:

ẑ(x0) =
nX

i =1

� i z(x i ); (3.10)

where ẑ is the estimated value of the primary variable at the point of interest

x0, z is the observed value at the sampled pointx i , � i is the weight assigned

to the sampled point, and n represents the number of sampled points used for

the estimation. Methods differ in the way � i is computed. In the environmental

sciences a large number of approaches have been proposed (Li and Heap, 2011),

even in combination with machine learning algorithms, and these are shown to be

often data-speci�c and variable-speci�c, i.e. there is not a single best solution but

rather several methods tailored to different problems.

The interpolation of surface wind is a very dif�cult task, particularly in complex

topography. While several examples exist (Li and Heap, 2011; Reinhardt and

Samimi, 2018; Scheuerer and Möller, 2015), to the best of our knowledge this

work is the �rst to consider the interpolation of measurements of surface wind with

an hourly granularity and at very �ne scales of down to 100m. Moreover, there

is no established method developed in a �exible3 and computationally ef�cient

way that allows to interpolate real-time data in a statistically optimised approach.

Nowcasting is also an important component of seamless4 prediction systems, thus

spatial and temporal consistency must be ensured during the transition from the

analysis (when real-time information has a higher in�uence on the prediction)

to longer lead-times. These premises lead us to think of interpolation not as

an explicitely separate procedure, but rather an intrinsic component of the ANN

post-processing model.

3A challenging aspect of nowcasting systems is that they must be able to deal with a varying
availability of real-time data. Therefore, several statistical techniques that rely on complete
time-series (e.g. Principal Component Analysis), despite being attractive for historical data
interpolation, are not �t for operational use.

4The word “seamless” usually denotes the paradigm of unifying weather prediction systems and
their components across all time scales.
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3.5.1 Similarity Index

This study proposes a new technique that is inspired by a concept of geostatistical

interpolation methods, the semi-variogram, to rapidly estimate a climatological

� between any pair of points in space. The method consists in calculating the

correlation matrix of the target variable for several pairs of stations, and then train

a model to predict the correlation of each pair based on the absolute difference of

topographical descriptors and geographical coordinates for those locations. This is

expressed as:

� ij = f (jX i � X j j); (3.11)

where � ij is the Similarity Index between stations i and j, f is the deep learning

model, X i and X j are the values of the topographical descriptors (and optionally

geographical coordinates) at stations i and j respectively. In order to reduce the

impact of spurious correlation, and as a way to isolate the correlation of local

scale weather opposed to synoptic scale weather variability, only pairs of stations

lying at a maximum distance of 30 km from each other were considered. After

this selection, a �nal number of 10292 pairs was used to �t a model, where every

station had on average 13 neighbours. In order to assess the bene�t of using

topographical descriptors, anaïvemodel was considered as a benchmark, which

only considered geographical coordinates and height.

In practice, the Similarity Index is used as follows: for any prediction we calculate

the Similarity Index between the target location and the 10 closest gauged locations,

and then chose the gauged locations with the largest value. Next, the observed

wind speed measurement from that station is included as predictor in the ANN

model, along with the respective Similarity Index value and leadtime (i.e. the age

of the measurements). Ideally, the ANN model is able to weigh the in�uence of the

chosen wind speed measurement based on the Similarity Index and the leadtime:

the larger value for the Similarity Index, the larger the in�uence. This method is

similar to regression Kriging in the way it uses a regression model and additional

covariates to generate a semi-variogram.
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Fig. 3.2.: The Similarity Index model architecture.

An important aspect concerning the Similarity Index is that between gauged

locations (where the value is 1) and the rest of the predicted values there is a "gap"

in the distribution, which is also observable in Fig. 4.1. The cause is very simple:

in the attempt to cover as much territory as possible, the measuring network was

developed in a way that purposely avoids setting up weather stations that are

very close to each other. This results in a small number of stations that show high

correlations (close to 1) of wind speed, and consequently in a very unbalanced

dataset where the occurrences of high values of Similarity Index are extremely rare.

Our way to address this will be discussed in Section 3.8.2.

3.5.2 Strati�cation: a step towards �ow-dependency

Ideally we want a model that is fully �ow-dependent, i.e. that calculates the

semi-variogram for every timestep, but that is also robust to noise. This is dif�cult

to obtain. This problem is analogous to the bias-variance tradeoff, except in

this case the model complexity can be translated to model�ow-dependency. The

analogy suggests that in this case too the best approach should be to �nd a good

balance. Based on this rationale, we decided to stratify �ow-dependency based on

synoptic conditions, that is, we calculated a correlation matrix for different weather
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types (the derivation of these classi�cation is presented in Weusthoff (2011)), and

included the weather classi�cation index as a categorical non-ordinal predictor

for the Similarity Index, using an embedding layer5. The ANN model architecture

is shown in Fig. 3.2. The embedding layer encodes each of the 9 weather types

into a tensor of 128 units, and depending on the input weather type it adds the

corresponding tensor to the output of the �rst hidden layer of the model.

3.6 Probabilistic Models and Bayesian Neural

Networks

This work was developed within an internal code base used at MeteoSwiss to

facilitate research in post-processing using machine learning. The ANNs used in

this project were developed using the python Deep Learning library Keras (Chollet,

2015), running on top of the machine learning platform Tensor�ow 6. Keras

provides a simple application programming interface to build deep learning models,

while Tensor�ow facilitates the machine learning work�ow with a comprehensive

ecosystem of tools and resources. Additionally, Tensor�ow Probability provides

tools to build probabilistic models, e.g. allowing to have a Conditional Probability

Distribution (CPD) as model output. Several PDFs are used to describe wind speed

frequency distributions. Although none of them is able to generalize all wind

regimes encountered in nature, some present clear advantages (Carta et al., 2009).

In a case study conducted by Carta et al. (2009) well known distributions such

as the Weibull or Gamma distribution explained >99% of variability for multiple

stations. The Gamma distribution of the output y used in this study is de�ned as:

pdf (y; �; � ) =
� � y� � 1e� �y

�( � )
; (3.12)

5Embeddings are methods for learning vector representations of categorical data. They are most
commonly used for working with textual data, because they capture some of the semantics of
words.

6https://www.tensor�ow.org/
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where � and � represent the concentration and rate parameters of the distribution,

respectively. In practice, these are the values of the nodes in the last hidden layer of

the ANN, which are then fed to the output probabilistic layer as shown in Fig. 3.5.

3.6.1 Quantifying uncertainty

Being able to infer a CPD allows to estimate thealeatoric uncertainty, by adapting

the shape of a distribution. This uncertainty is inherent to the process of interest

and represents the variability that cannot be described by the input data of the

model. In the case of wind speed, or for others meteorological parameters for

that matter, is a consequence of the chaotic nature of the atmosphere and the

measurement errors. In a general way, the predictive distribution for the output y

in such conditions would be:

p(yjx; w); (3.13)

where x represents the input data and w the model parameters that eventually

de�ne � and � in our case. Unfortunately, ANN models that use this approach

tend to be miscalibrated. The predictive distributions are overcon�dent (i.e. under-

dispersive), therefore worsening the reliability of a forecast. The reason for this

de�ciency is that conventional methods for probabilistic modelling ignore another

kind of uncertainty: the epistemic uncertainty, also referred to asmodel uncertainty.

This is related to the erroneous assumption that a model (i.e. its parametersw)

is completely determined by a �nite dataset. Instead, one must recognize the

uncertainty of the model itself, represented by its posterior probability p(wjD)

where D is the data used for training. That's where Bayesian Neural Networks are

introduced, with a new way to formulate the predictive distribution:

p(yjx; D ) =
Z

p(yjx; w)p(w; D)dw: (3.14)
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Equation 3.14 represents the Bayesian Model Average (BMA). Rather than bet

everything on a single hypothesis (a single model with �xed w parameters), we use

every possible setting of parametersw, weighted by their posterior probabilities.

Note that in this formulation the probability is not conditioned on w but on D, thus

the idea that the model parameters have beenmarginalized. Finding an accurate

and fast way to approximate the BMA integral has become an important subject

of research in Deep Learning, and several approaches have been proposed. For

more theoretical background the reader may refer to e.g. Wilson (2020), Wang

and Yeung (2020), Dürr et al. (2020), and Jospin et al. (2020).

3.6.2 Monte Carlo Dropout

A widely used technique for a Bayesian approximation is Monte Carlo (MC) Dropout

(Gal and Ghahramani, 2016). As mentioned in Chapter 2, Dropout is a regularisa-

tion technique used to prevent over�tting during training, whereby weights are

randomly deactivated. The idea behind MC Dropout is to also activate dropout

during inference. Then, for a given input x, one makes several predictions where

each prediction results from a slightly different version of the model. Speci�cally,

one predicts for the same input x T-times a CPD corresponding to a combination of

weights wi , or in other words one takes samplesy � p(yjx; D ) of T different con-

�gurations of w (whereas in a non-Bayesian approach we would simply create an

ensemble by sampling from a model with �xed w). Then, the dropout predictions

are combined to a Bayesian predictive distribution:

p(yjx; D ) =
1
T

TX

t=1

p(yjx; wt ) (3.15)

that is shown to be an empirical approximation of Equation 3.14.
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3.6.3 Assessment of the predictive performance

To assess the quality of a probabilistic forecast, one must assign a numerical score

based on the predictive distribution and the value that materializes. Gneiting,

Balabdaoui, et al. (2007) contended that the goal of probabilistic forecasting is

to "maximize the sharpness of the predictive distributions subject to calibration".

Sharpness refers to the concentration of the predictive distributions and is a

property of the forecasts only. Calibration refers to the statistical consistency

between the forecast distributions and the observations and is a joint property of

the predictions and the events that materialize. Further studies have formalized

this framework for forecast veri�cation by linking it to decision theory, speci�cally

proper scoringrules (Gneiting and Raftery, 2007; Gneiting and Katzfuss, 2014) and

identi�ed metrics with the most desirable properties. Among these an especially

attractive metric is the Continuous Ranked Probability Score (CRPS) (Matheson

and Winkler, 1976), chosen for this study. The CRPS addresses both sharpness and

calibration, is negatively-oriented and can be interpreted as a generalised version

of the Mean Absolute Error for the case of probabilistic forecasts (Gneiting and

Raftery, 2007), and is therefore expressed in the same units as the target value.

The CRPS is de�ned as:

CRPS(F; y) = �
Z + 1

�1
(F (y) � 1(x � y))2dx (3.16)

where F is the cumulative distribution of the predicted distribution and y is the

materialized value. The equation therefore corresponds to the integral of the

Brier score along all real-valued thresholdsx. Gneiting and Raftery (2007) gave

an alternative formulation more suited for computation in the case of ensemble

predictions and showed that:

CRPS(F; y) = EF jŶ � yj �
1
2

EF jŶ � Ŷ 0j (3.17)

where Ŷ and Ŷ 0 denote independent random variables drawn from the forecast

distribution associated with F , and EF denotes the expectation value underF , that
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in our case was evaluated from 100 samples. The CRPS formulated as in 3.17 is

used in this study as loss functionL during training.

To qualitatively assess the calibration of a probabilistic forecast, Probability Integral

Transform (PIT) histograms are an appropriate tool that complement the CRPS.

The use of the PIT is discussed in detail in Gneiting, Balabdaoui, et al. (2007).

Considering a probabilistic forecast and materialized observation pair (F , y), the

PIT is de�ned as:

P IT = F (y): (3.18)

If the forecast is perfectly calibrated, then the PIT values follow a standard uniform

distribution. This is equivalent as saying that, considering the random variable y,

y is indeed drawn from the predicted distribution F . One should note however,

that the uniformity of the distribution is a necessary but not suf�cient condition for

the forecast to be perfect, as shown by Hamill (01 Mar. 2001). In practice, when

dealing with ensemble forecasts, Eq. 3.18 can also be expressed as:

P IT =
1

M

MX

m=1

1(Ŷ � y): (3.19)

where M is the number of members of the ensemble,Ŷ is a sample drawn from

the predicted CDF andy is the observed value.

3.7 Preprocessing

In machine learning, preprocessing is an important step where the raw data is

prepared to be used by the model. This typically involves a quality control (e.g.

outlier detection, checking homogeneity of a time series), transformations applied

to the data and the creation of independent subsets of data.
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3.7.1 Dataset preparation and transformation

The observational dataset used in this study was �ltered with the following criteria:

(a) exclusion of stations with known bad quality measurements, (b) exclusion of

WSL stations located in forests, (c) exclusion of IMIS snow stations, (d) exclusion of

individual suspicious measurements. Steps (a) and (c) were applied under advise

from domain experts. Step (b) was applied considering land-cover information

is not used as predictor in the post-processing model. Step (d) was applied by

excluding sequences of �xed value measurements, which may be artifacts resulting

from software or hardware errors (e.g. frozen measurement device). Missing

observations for gaps of up to three hours were �lled by linearly interpolating

in time, and �nally an additional cleansing was applied by excluding all time

references with missing values either from the NWP or the observational dataset. In

addition to the collection of wind speed data itself, part of the dataset preparation is

also to collect meta-data about each station. In this sense, a particularly important

information is the height above the ground of an anemometer, which varied greatly

in our dataset (from a minimum of 2 meters to a maximum of 62 meters) and

in�uences the observed wind speed. Missing values were set to 10 meters, as this

is the default for most weather stations.

Data scaling is a recommended pre-processing step when working with arti�cial

neural networks. One type of scaling is standardization, which involves transform-

ing the distribution of values of a dataset so that the mean of observed values is 0

and the standard deviation is 1.

xstandardized =
x � xmean

xstd
(3.20)

where x is the raw value, xmean and xstd are the mean and standard deviations of

the training dataset respectively. It is important to make sure that the new input

features from independent datasets are always scaled with respect to the training

dataset.
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Fig. 3.3.: Dataset split along spatial and temporal dimension. Split for stations is random,
split for time is sequential.

3.7.2 Data-split

In order to assess the generalisation capability of a model, a three-way split

was applied to the dataset, resulting in training, validation and test independent

datasets. The split was applied along both spatial (the stations) and temporal

dimensions, as shown in �gure 3.3. This allows to evaluate both the spatial and

temporal generalisation. The split was randomised in the case of stations, and

sequential for time references. The sequential split in time is necessary because

we must ensure that no test sample is too close to a training sample, as this would

violate the independence of the datasets.

3.8 Models

3.8.1 Baseline

The baseline model used for our evaluation is simply the COSMO-E nearest neigh-

bor grid point around each measurement station.
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3.8.2 Post-processing model (PP) and

post-processing-nowcasting model (PP-NC)

A fully connected sequential model, known as the Multi Layer Perceptron (MLP)

was considered in this study. This architecture is fairly simple to implement and

is a proven solution for many regression and classi�cation tasks in deep learning.

A Recti�ed Linear Unit activation function was used and dropout layers were

applied after every hidden layer, using a 50% rate. The architecture is displayed

in �gure 3.4. We used the same architecture to train two different models: a

post-processing model, and a post-processing-nowcasting model that also includes

real-time observations as predictors. For a matter of consistency, the two models

where trained under the exact same conditions in terms of hyperparameters and

dataset split. Both models were trained using a custom batch generator that

allowed us to specify the number of different stations, reference times (i.e. the

time that de�nes the start of a model run) and leadtimes in each batch. After

some trials, we opted for batches composed of 100 stations, 100 reference times

and 50 leadtimes. Although a more systematic way to tune this hyperparameters

would have been preferable, it was out of the scope of this work. We used the

Adam optimization algorithm and speci�ed a learning rate of 0.001. In addition to

dropout as a part of the models architecture, we implemented early stopping as a

regularisation technique.

For the PP-NC model, an important aspect was to learn how to treat high val-

ues of Similarity Index. For the reasons explained in 3.5.1, namely the under-

representation of high values, this was a challenge. Although in our dataset very

few samples of high Similarity Index exist, in the real world, when we consider all

locations in space and not just those where stations are located, these are actually

much more common (see e.g. Fig. 4.2). The question is: how do we counteract

this unbalance? We have found that a relatively simple solution was to over-sample

data points with Similarity Index equal to 1., in other words examples where the

observation of the station itself is used (we refer to them as "gauged" points or

stations). We have tried several options and �nally used a proportion of 30% of

gauged stations in our training dataset, which resulted in a good treatment of high

values of Similarity Index without detrimental effects on low values.
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Fig. 3.4.: MLP model architecture used for the PP and PP-NC models.

3.9 Interpretability

3.9.1 SHapley Additive exPlanations

For the interpretation of the model, the SHAP (SHapley Additive exPlanations)

framework (Lundberg and Lee, 2017) was considered for this study. SHAP uses a

coalitional game-theoretic approach to estimate the contribution of each feature to

the model output, i.e. it provides a fast way to estimate Shapley values (Lundberg

and Lee, 2017). In this framework, the different predictors can be regarded as

players in a coalition, and Shapley value determine how to fairly distribute the

"payout", or prediction, among the players. SHAP has uni�ed other methods for

model explanations, such as LIME (Ribeiro et al., 2016) or DeepLIFT (Shrikumar et

al., 2019), under a newly de�ned class of methods called additive feature attribution

method. It is important to note that this kind of model explanations alone does

not necessarily represent the process of interest, but rather serve as a tool for

knowledge-based interpretation. Just like correlation does not imply causation,

the impact of a feature on a prediction does not imply a direct physical cause,

because explanations that we compute with SHAP aretrue to the model, and the

model is unaware of physical relationships (unless we enforce them somehow). In

other words, we are not able to strictly determine the true impact of a predictor
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Fig. 3.5.: A simpli�ed representation of the ANN used to make probabilistic predictions of
wind speed. The two nodes of the last layer are the parameters� and � of the
predicted distribution of y.

for the occurrence of a given target value: we are only able to explain how the

model reaches its conclusion. This implies that counter-intuitive explanations can

be observed, particularly in presence of multicollinearity. This question is discussed

in more detail by Chen et al. (2020).

SHAP comes with a few interesting features: we get contrastive explanations, i.e.

every individual prediction is compared with the average prediction. In other

words, the SHAP values tell us how predictors are "pushing" a single prediction

in one direction or the other with respect to an average of many predictions.

While several other methods are generally limited to providing information about

feature importance, with SHAP we are able to explain individual predictions. The

framework also provides a useful set of visualisations to get insights about the role

of each predictor7. For a matter of simplicity, the SHAP values were computed in

this study only for the mean of the output CPD, therefore ignoring the uncertainty

of the prediction.

7see https://github.com/slundberg/shap for some examples
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4Results and discussion

4.1 Similarity Index

4.1.1 Model performance

In this section we analyse the results obtained with the Similarity Index model, and

compare a naïve solution with the �nal model. Figure 4.1 shows the predictions

against the true correlations for an independent test dataset, for both the naïve

model and the �nal model. Our best model could make predictions with a mean

absolute error of 0.092, and the goodness of �t is also validated by an R-squared

value of 0.823. Overall, the �nal model is capable of approximating the correlation

of wind speed measurements between two locations based on their relative geo-

graphical and geomorphological setting. The use of the relative geomorphological

setting in addition to the distance in terms of geographical coordinates (x, y, z)

brings a signi�cant improvement. This is consistent with the assumption that wind

variability in complex topography is highly related to the surrounding topography

of a location. Despite the good results for most samples, there are still substantial

errors in few cases. However, a visual inspection could determine that the error

distribution is close to Gaussian. This indicates that there is no systematic source

of error and that it is random, likely due to unknown factors in�uencing the true

correlation and/or to errors in its estimation.

A possible evidence for the latter is the fact that the MAE (shown in Table 4.1)

is higher for less frequent weather classi�cations, for which correlations are less

robust. To further evaluate the �tness of the model, we analysed the model SHAP

explanation and inspected some examples of the Similarity Index computed over a

region in the northern Alps.
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Tab. 4.1.: MAE for each CAP9 weather classi�cation.

CAP9 code 0 1 2 3 4 5 6 7 8

MAE 0.07 0.09 0.09 0.09 0.09 0.08 0.10 0.13 0.10

Fig. 4.1.: Predicted Similarity Index against the true correlation for station pairs of an
independent test dataset, for a naïve model (left) and the �nal model (right).

4.1.2 Interpretation of the results

The analysis of SHAP values highlights the importance of the difference in elevation

(DEM), as well as the TPI at a 500 meters scale. Our interpretation is that elevation

is a main factor to determine the local weather regimes to which a location is

subject, while the TPI at this particular scale is the most useful feature to distinguish

between sheltered or exposed locations. The weather type also shows a signi�cant

effect on the overall prediction of the Similarity Index. While a characterisation

of the contribution of each speci�c weather type is dif�cult with the available

data, we believe a high degree distinction can be made between situations with

strong and weak synoptic forcing. As shown in Figure 4.3, the former and the

latter have respectively a positive and negative average impact to the �nal model

output. This difference is likely due to the scale at which atmospheric dynamics

take place, as well as their magnitude. For instance, in a situation with strong large

scale advection, or during an event such as the passage of a cold front, wind speed

varies similarly across large regions and different geomorphological settings. On

the contrary, in the absence of large-scale or meso-scale dynamic systems we see a
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Fig. 4.2.: Mean absolute impact for each predictor of the Similarity Index model.

Fig. 4.3.: Average impact of each weather type classi�cation (CAP9) on the predicted
Similarity Index. Weather situations with strong synoptic forcing (such as low
pressure systems or strong large scale advection) have a positive impact on the
�nal output, while situations with weak synoptic forcing (such as high pressure
systems) have a negative impact.

prevalence of small-scale weather regimes (e.g. the diurnal cycle) and localized

effects of topography (e.g. crest speedups) in determining wind speed variability.

Figure 4.4 shows an example of the Similarity Index for a region of central Switzer-

land (see A.2), calculated with respect to the weather station (labeled "PIL") located

on the Pilatus mountain massif at 2105 meters above sea level, for all weather

types. The spatial distribution re�ects the importance of predictors: the difference

in elevation determines most of the variability, and topographical descriptors high-

light speci�c features such as ridges, crests and narrow valleys. Moreover, it is

evident how the model responds differently to weak and strong synoptic situations,
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