

EMS2023-261 An air quality multi-model prediction system for the Basque Country

A. Diaz de Arcaya^{1,2}, I.R. Gelpi^{1,2}, J.A. Arrillaga^{1,2}, A. Castaño^{1,2}, **S. Gaztelumendi**^{1,2}

1 - Basque Meteorology Agency (EUSKALMET), Basque Country. 2 - BRTA, Tecnalia, Weather & Climate Area, Energy, Climate Change and Urban Transition Unit, Basque Country.

tecnala

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

INDEX

- 1. Introduction
- 2. Model implementation (CHIMERE and WRF-CHEM)
- 3. Post-processing
- 4. Validation
- 5. Conclusions and future work
- 6. References
- 7. Acknowledgments

1. Introduction

Context:

If the problem of air pollution in the Autonomous Community of the Basque Country (BAC) has been very important throughout past century, with Bilbao area being one of the most affected zones. ✓ Air quality has improved substantially during this century, due to different factors (environmental policies applied, general socio-economic context, ...) although the evolution has been different for different types of pollutants* and punctual poor quality episodes are still produced. An air quality control network and hourly pollutants concentration data are available in the Territory. \checkmark Air quality community models are available and mature. Vumerical weather modeling expertise and computing infrastructure are present in Tecnalia and Euskalmet. \checkmark Increasing focus on operational impact weather and health effects.

This context (and other factors) arises to the need and opportunity to implement a system that extend operational Euskalmet forecast capabilities (weather, oceno-meteorology, ...) to air quality.

* In general, during the 21st century the air quality in BC has been improving over the years, due to the environmental policies applied and the general socio-economic context. Episodes of moderate or poor air quality due to the impact of SO2 (industrial, diesel, power generation) have been reduced and have almost disappeared; those related to CO (traffic) are nearly nonexistent; NO2 episodes (traffic, energy, heating), which mainly affect urban areas, have been reducing for years; moderate or poor quality events with high PM10 and PM2.5 (antrophogenic and natural, direct and indirect), shows a systematic decrease; in the case of O3 (photochemical secondary pollutant) an increase in episodes in recent years with a growing trend is observed.

& TECHNOLOGY ALLIANCE

1. Introduction

- Here we introduce an air quality multi-model prediction system that we have implemented in the Basque Country for air quality forecast at local level, based on **CHIMERE and WRF-CHEM**.
- > The final objective is the **hourly prediction** of air quality in the domain of the Basque Country based on forecasted values of main pollutants concentrations (CO, NO2, O3, PM10, PM2.5 and SO2).
- \succ We present some aspects of the implementation, post-processing, validation and some conclusions from pre-operational and operational experiences.

2. Implementation - CHIMERE (1/3)

- The CHIMERE multi-scale model is primarily designed to produce daily forecasts of ozone, aerosols and other pollutants and make long-term simulations for emission control scenarios.
- CHIMERE runs over a range of spatial scales from the regional scale to the urban scale. It can run with several vertical resolutions, and with a wide range of complexity. It can run with several chemical mechanisms, simplified or more complete, with or without aerosols.
- The chimere2014b was implemented over Linux OS. The following libraries were required, Fortran 95 compiler, GNU bash Bourne shell, awk and make, Unidata NetCDF library, Open MPI and the NCO libraries
- Forecast are available for 96 hours.

Anthropogenic emissions

EMEP inventary Local dataset

Biogenic and natural emissions

MEGAN dataset

Dust emissions

embedded CHIMERE pre-

processor

Boundary/Initial conditions MACC, CHIMERE

CHIMERE

Outputs CHIMERE (4 domains, 96 hours)

Post-processor using python scripts

SO2, O3, PM10, PM2.5, NO2 (96 hours and four domains)

2. Implementation - CHIMERE (2/3)

CHIMERE meteorology

Four WRF nested domains are executed daily (GFS 1º 00h)

D1 -81x81km

CHIMERE domains

D2 – 27x27 km

Domain	NX	NY	DX	DY	XMIN	YMIN
DCH.1	193	153	0.27	0.27	-29	26
DCH.2	120	105	0.2	0.2	-15	33
DCH.3	100	60	0.1	0.1	-7	40
DCH.4	140	91	0.014	0.014	-3.5	42.35

D1 ~0.27^ox0.27^o (20 km aprox)

$D2 \sim 0.2 \times 0.2^{\circ}$ (15 km aprox) $D3 \sim 0.1 \times 0.1^{\circ}$ (7km aprox)

EMS 2023-261

D3 – 9x9 km

D4 -3x3 km

D4 ~0.014ºx0.014º (1km aprox) km

2. Implementation - CHIMERE (3/3)

CHIMERE emissions

EMEP datasets is processed with emi-surf.sh)

webDab output on wed Jun & 09:16:29 2016
Format: ISO2; YEAR; SECTOR; POLLUTANT; LONGITUDE; LATITUDE; UNIT; NUMBER/FLAG PL;2014;S1;C0;13.5;53;Mg;1.5561 PL;2014;S1;C0;13:5;S3;Mg;1:5361 PL;2014;S2;C0;13:5;S3;Mg;73:06 PL;2014;S3;C0;13:5;S3;Mg;3:2838 PL;2014;S4;C0;13:5;S3;Mg;0 PL;2014;S5;C0;13:5;S3;Mg;0 PL;2014;56;C0;13.5;53;Mg;0 PL;2014;57;C0;13.5;53;Mg;23.9837 PL;2014;S8;C0;13.5;53;Mg;2.6325 PL;2014;59;C0;13.5;53;Mg;0.832

Local datasets are included in netcdfs generated by emis-surf.sh

UTM

EMS 2023-261

EMIS.DCH.4.01.APINEN.s.nc EMIS.DCH.4.01.BaP_fin.s.nc EMIS.DCH.4.01.BbF_fin.s.nc EMIS.DCH.4.01.BCAR_coa.s.nc EMIS.DCH.4.01.BCAR_fin.s.nc EMIS.DCH.4.01.BkF_fin.s.nc EMIS.DCH.4.01.C2H4.s.nc EMIS.DCH.4.01.C2H5OH.s.nc EMIS.DCH.4.01.C2H6.s.nc EMIS.DCH.4.01.C3H6.s.nc EMIS.DCH.4.01.C5H8.s.nc EMIS.DCH.4.01.CH3CHO.s.nc EMIS.DCH.4.01.CH3COE.s.nc EMIS.DCH.4.01.CH3OH.s.nc EMIS.DCH.4.01.CH4.s.nc EMIS.DCH.4.01.CO.s.nc

2. Implementation – WRF-CHEM (1/3)

- The WRF-Chem model is a multi-scale model, fully integrated on WRF, that produces forecasts of different pollutants (ozone, aerosols, ...)
- Chemistry part of the model needs to be provided by additional gridded input data related to emissions.
- This additional input data is provided either by the WPS (dust emission fields), or read in during the real.exe initialization (e.g., biomass burning, biogenic emissions, GOCART background fields, etc.), or read in during the execution of the WRF solver (e.g., anthropogenic emissions, boundary conditions, etc.).

Boundary/Initial conditions GFS 1º

WRF-CHEM (meteorology online)

Outputs WRF_CHEM (three domains, 96 hours)

Postprocessor using python scripts

SO2, O3, PM10, PM2.5, NO2 (96 hours and three domains)

2. Implementation – WRF-CHEM (2/3)

WRF-CHEM domains

Three nested domains are executed daily considering the GFS 1^o outputs for 00h

- D1 ~ 44x44km

D3 ~ 2.75 x 2.75 km

WRF-CHEM configuration

The mechanism used during the forecast is decided with the name list parameter chem_opt. It was selected selected 303 RADM2 Chemistry and GOCART aerosols with simple aerosol treatment.

The following options were selected,

- emiss_opt = 5, for GOCART RACM_KPP emissions, using RETRO/EDGAR emissions
- dmsemis_opt=1, it calculates biogenic emissions online using the Gunther scheme
- dust_opt=1 GOCART dust emissions were included
- seas_opt=1 for GOCART sea salt emissions
- bio_emiss_opt=1

EMS 2023-261

2. Implementation – WRF-CHEM (3/3)

WRF-CHEM emissions

EDGAR/RETRO datasets is processed with prep_chem_sources.exe and with convert_emiss.exe

matrixfire-T-2023-07-12-000000-g1.ctl matrixfire-T-2023-07-12-000000-g1.gra matrixfire-T-2023-07-12-000000-g1.vfm matrixfire-T-2023-07-12-000000-g1-ab.bin matrixfire-T-2023-07-12-000000-g1-bb.bin matrixfire-T-2023-07-12-000000-g1-gocartBG.bin

> wrfchemi_00z_d01 wrfchemi_00z_d02 wrfchemi_00z_d03 wrfchemi_12z_d01 wrfchemi_12z_d02 wrfchemi_12z_d03 wrfchemi_gocart_bg_d01 wrfchemi_gocart_bg_d02 wrfchemi_gocart_bg_d03

2. Implementation - Summary

- > The air quality prediction multi-model system developed is based on two main modelization strategies, one using **CHIMERE** and another one based on **WRF-CHEM**.
- > Both models are executed daily with a prediction horizon of up to 4 days and with resolutions around 1 km.
- > In the case of the CHIMERE chemical transport model, four nested domains are considered, being the coarser domain Western Europe and the finer one the Autonomous Community of the Basque Country (CAE), **WRF** model meteorological fields are included **offline**.
- > In the case of WRF-CHEM, three nested domains are implemented, the first one being Western Europe and the last one the CAE, in this case meteorology given by the WRF model and the pollutant transport module, are executed online.
- > In both cases, model starts from the initial and boundary weather conditions given by the onedegree GFS global prediction model.
- > The emissions are those given by the EMEP emissions inventory for the CHIMERE model and EDGAR for the anthropogenic emissions required by WRF-CHEM. A proprietary emissions inventory has been used for the domain of the Autonomous Community of the Basque Country.

3. Post-processing (1/2)

Native output fields are postprocessed through a set of python scripts in order to get ulletdifferent products (maps, graphs, tables, etc..) for operational exploitation.

Example of concentration maps on surface for different pollutants from CHIMERE and WRF-CHEM side.

EMS 2023-261

3. Post-processing (2/2)

Example: Graphs with observations and model outputs for different air quality stations for a 45 days period from 2023/06/01 to 2023/07/12 (The levels to define the air quality very bad, bad, moderate, good and very good, depends on the european regulations)

CHIMERE

WRF-CHEM

EMS 2023-261

Euskalmet EUSKAL METEOROLOGIA AGENTZIA

CHIMERE

ZIERBENA - initial: 20230601 ,End: 20230716 Mean:17.3/12.2 Max: 121.0/33.1 Min: 2.0/4.4 - Obs/Model 600 1000 1200 hours

WRF-CHEM

CASTREJANA - initial: 20230601 ,End: 20230716 Mean:15.9/13.9 Max: 47.0/57.0 Min: 2.0/2.3 - Obs/Model PM10 real 120 PM10 model 100 1200

4. Validations (1/4)

- Validation has been set based on punctual forecasted-observed comparisons, per model, per pollutant, per categorical forecast accordingly with air quality thresholds.
- We include different metrics: Proportion Correct (PC), Probability Of Detection (POD), False Alarm Ratio (FAR), Frequency Bias Index (BIAS), Critical Success Index (CSI) and Heidke Skill Score (HSS)
- Several contingency tables are prepared in order to compare different events in each category.

A change from one category to another is considered to occur when at least once a day the pollutant concentration value exceeds one of the levels marked by the following table.

Air quality	SO2 (µg/m3)	NO2 (µg/m3)	CO (mg/m3)	O3 (µg/m3)	PM10 (µg/m3)	PM2.5 (μg/m
Very good	0-100	0-40	0-5	0-80	0-20	0-10
Good	101-200	41-100	5-7	81-120	21-35	11-20
Moderate	201-350	101-200	7-10	121-180	36-50	21-25
Bad	351-500	201-400	10-20	181-240	51-100	26-50
Very bad	501-1250	401-1000	20-30	241-600	101-1200	51-800

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

4. Validations (2/4)

(Examples for 1 January to 25 July 2023)

ELCIEGO CHIMERE

O3

	POD	FAR	BIAS	CSI		
Very good	0.55	0.72	1.95	0.23		
Good	0.79	0.13	0.9	0.71		
Moderate	0.1	0.8	0.5	0.07		
Bad						
Very bad						
ELCIEGO WRF-CHEM						
	POD	FAR	BIAS	CSI		
Very good		1		0		
Good	0.72	0.16	0.85	0.63		
Moderate	0	1	0.2	0		
Bad						
Very bad						

PC=0.63 HSS=-0.09

PC=0.73

HSS=0.2

Goo

Goo

Mo

Mod

Goo

Mo

/er

Goo

Mo

PM10

ZIERBANA CHIMERE

	POD	FAR	BIAS	CSI
Very good	0.32	0.16	0.38	0.3
Good	0.37	0.7	1.21	0.2
Moderate	0	1	22	0
Bad		1		
Very bad		1		

PC=0.33 HSS=0.06

ZIERBANA WRF-CHEM

	POD	FAR	BIAS	CSI
Very good	0.65	0.79	3.12	0.19
Good	0.36	0.71	1.25	0.19
Moderate	0.28	0.61	0.72	0.10
Bad	0.29	0.33	0.44	0.25
Very bad	-2			

PC=0.34 HSS=0.13

VALDEREJO CHIMERE

	POD	FAR	BIAS	CSI	
good	0.2	0.92	2.5	0.06	
d	0.78	0.11	0.88	0.71	
lerate	0.59	0.52	1.23	0.36	
bad					

PC=0.73 HSS=0.25

VALDEREJO WRF-CHEM

	POD	FAR	BIAS	CSI
good		1		
ł	0.76	0.1	0.84	0.7
erate	0.25	0.78	1.13	0.13
bad				

PC=0.70 HSS=-0.08

CASTREJANA CHIMERE

	POD	FAR	BIAS	CSI
good	0.44	0.38	0.71	0.35
I	0.43	0.64	1.2	0.24
lerate	0	1	3.14	0
	0	1	1.67	0
bad				

PC=0.42 HSS=0.01

CASTREJANA WRF-CHEM

	POD	FAR	BIAS	CSI
good	0.59	0.8	3	0.17
ł	0.48	0.41	0.82	0.36
lerate	0.12	0.74	0.46	0.09
	0	1	0.45	0
bad				

PC=0.38 HSS=0.06

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

4. Validations (3/4)

(Examples for 1 January to 25 July 2023)

SANTURCE CHIMERE

NO₂

	POD	FAR	BIAS	CSI
Very good	0.66	0.26	0.89	0.54
Good	0.58	0.56	1.3	0.33
Moderate	0		0	0
Bad				
Very bad				

SANTURCE WRF-CHEM

	POD	FAR	BIAS	CSI	
Very good	0.57	0	0.57	0.57	
Good		1		0	
Moderate					
Bad					
Very bad					

PC=0.57 HSS=-0.0

PC=0.61

HSS=0.21

PM2.5 EUROPA WRF-CHEM

	POD	FAR	BIAS	CSI	
Very good	0.25	0.86	1.79	0.1	
Good	0.5	0.47	0.94	0.34	
Moderate	0.14	0.78	0.63	0.09	
Bad	0.31	0.71	1.08	0.17	
Very bad		1			

PC=0.36 HSS=0.04

SO2

ABANTO WRF-CHEM

	POD	FAR	BIAS	CSI
Very good	1	0	1	1
Good				
Moderate				
Bad	10			
Very bad				

PC=1

Go

Go Mo

Go

Go

MUSKIZ CHIMERE

	POD	FAR	BIAS	CSI
ry good	0.95	0.35	1.46	0.63
od	0.05	0.67	0.15	0.04
oderate	0		0	0
d				
ry bad				

PC=0.64 HSS=0.0

PC=0.96 HSS=-0.0

MUSKIZ WRF-CHEM

	POD	FAR	BIAS	CSI
y good	0.96	0.96	0	0.97
od		1		0
derate				
ł				
ry bad				

MUNDAKA WRF-CHEM

	POD	FAR	BIAS	CSI
y good	0.43	0.89	3.86	0.1
bd	0.56	<mark>0.68</mark>	1.76	0.25
derate	0.12	0.79	0.55	0.08
ł	0.32	0.28	0.44	0.28
y bad		1		

PC=0.34 HSS=0.1

PC=1

CO

ALGORTA CHIMERE

	POD	FAR	BIAS	CSI
y good	1	0	1	1
bd				
derate				
ł				
y bad				

4. Validations (4/4)

Preliminary results:

- In the case of particulate material better results are found with the WRF-CHEM model that the CHIMERE model.
- In general, the forecasted ozone concentrations are higher with CHIMERE model that with the WRF-CHEM model, in both cases lows concentrations are not well forecasted.
- In the case of nitrogen oxides both models are not able to forecast the maximum concentrations.

5. Conclusions and future work

Conclusions

- An air quality forecasting system has been implemented for Basque Country. Based on CHIMERE and WRF-CHEM proving that operational air quality local forecast based on community models and public data is a plausible task.
- ✓ The WRF-CHIMERE and WRF-CHEM models were configured and validated to simulate concentrations of main pollutants (CO, NO2, PM10, PM2.5, O3) and SO2) including global and local datasets of emissions.
- \checkmark The present work represents a first step in the use of numerical models for atmospheric chemistry simulations in Euskalmet.

5. Conclusions and future work

Future work

- \succ A better and more complete representation of local emission sources (temporal evolution, emissions ratios, ...) are going to be introduced in order to improve results, particularly discrepancies observed in the hourly trends of modelled pollutants.
- > A dedicated intranet is going to be implemented in order to full exploitation of results from the multi-model air quality system.
- > Further work is needed in order to obtain a full operational system (four executions daily, improve final products usefulness, blending, resolution, bias correction, etc ...)
- > New strategies based on AI and ML approach are planned exploiting air quality and weather available data at different spatial and temporal resolutions.

tecnala MEMBER OF BASQUE RESEARCI & TECHNOLOGY ALLIANCE

5. References

- Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M, Bontemps S, Leroy M, Achard F, Herold M, Ranera F, Arino O. GlobCover -Products Description and Validation Report. Toulouse (France): MEDIAS-France; 2008. JRC49240
- Brian L. Smith, Billy M Williams, R. K. Keith Oswal Comparison of parametric and nonparametric models for traffic flow forecasting, 2002.
- Gaztelumendi S., Gelpi I.R., Egaña I.R., Otxoa de Alda K. 2007. Mesoscale numerical weather prediction in Basque Country Area: present and future . , EMS7 & ECAM8, 1-5 Oct 2007, El Escorial, Madrid.
- Gaztelumendi, S., González, M., Egaña, J., Rubio, A., Gelpi, I.R., Fontán, A., Otxoa deAlda K., Alc N, Ferrer, L, Mader, J., Uriarte, Ad., 2009. Implementation of an operational oceanometeorological system for the Basque Country. Thalassas, 26 (2): 151-167.
- Gaztelumendi S., Diaz de Arcaya A., Gelpi I.R., 2019. Synoptic characterization of daily air quality in Basque Country., EMS Annual Meeting 2019 European Conference for Applied Meteorology and Climatology 9 - 13 September 2019 Copenhagen. Denmark.
- Gaztelumendi S., Egaña J., Otxoa-de-Alda, K., Hernandez, R., Aranda, J., and Anitua P. (2012): "An overview of a regional meteorology warning system", Adv. Sci. Res., 8, 157–166, doi:10.5194/asr-8-157-2012, 2012.
- Gaztelumendi S., Egaña J. Liria P., Gonzalez M., Aranda J.A., Anitua P. (2016) "The new Euskalmet coastal-maritime warning system". Adv. Sci. Res., 13, 91-96, 2016 www.adv-scires. net/13/91/2016/ doi:10.5194/asr-13-91-2016
- Gelpi I. R., Gaztelumendi, S., Otxoa de Alda, K. and Egana, J.: "A NWP Validation System Based in Basque Country Automatic Weather Station Mesonet Data". 4th International Conference on Experiences with Automatic Weather Stations. Lisboa (Portugal) – 24th, 25th & 26th May 2006.
- Gelpi I. R., Pedruzo, X., Diaz de Arcaya A., Gomez de Segura JD, Gaztelumendi, S. 2021. Hyper-local extreme temperature and wind modeling in the Basque Country. EMS 2021.
- Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P., and Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6:3181-3210.
- Hansen, M., R. DeFries, J.R.G. Townshend, and R. Sohlberg (1998), UMD

Global Land Cover Classification, 1 Kilometer, 1.0, Department of Geography, University of Maryland, College Park, Maryland, 1981-1994.

- Iancu, A., Martelli, S., Cerutti, A. K., Janssens-Maenhout, G., Melica, G., Rivas-Calvete, S., Kona, A., Zancanella, P., and Bertoldi, P., "A harmonised dataset of greenhouse gas emissions inventories from cities under the EU Covenant of Mayors initiative", ESSD, 7, 1-47, 2015
- Jolliffe, I.T., and D.B. Stephenson, 2003: Forecast Verification. A Practitioner's Guide in Atmospheric Science. Wiley and Sons Ltd, 240 pp.
- Kona, A., Monforti-Ferrario, F., Bertoldi, P., Baldi, M. G., Kakoulaki, G., Vetters, N., Thiel, C., Melica, G., Lo Vullo, E., Sgobbi, A., Ahlgren, C., and Posnic, B.: Global Covenant of Mayors, a dataset of greenhouse gas emissions for 6200 cities in Europe and the Southern Mediterranean countries, Earth Syst. Sci. Data, 13, 3551–3564, https://doi.org/10.5194/essd-13-3551-2021, 2021.
- Menut L, B.Bessagnet, D.Khvorostyanov, M.Beekmann, N.Blond, A.Colette, I.Coll, G.Curci, G.Foret, A.Hodzic, S.Mailler, F.Meleux, J.L.Monge, I.Pison, G.Siour, S.Turquety, M.Valari, R.Vautard and M.G.Vivanco, 2013, CHIMERE 2013: a model for regional atmospheric composition modelling, Geo-scientific Model Development, 6, 981-1028, doi:10.5194/gmd-6-981-2013.
- Menut L. and B.Bessagnet, 2010, Atmospheric composition forecasting in Europe, Annales Geophysi-cae, 28, 61-74
- Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat Geochem, 4, 123-152, 1998
- Rouil L., C.Honore, R.Vautard, M.Beekmann, B.Bessagnet, L.Malherbe, F.Meleux, A.Dufour, C.Elichegaray, J-M.Flaud, L.Menut, D.Martin, A.Peuch, V-H.Peuch, N.Poisson, 2009, PREV'AIR: an operational forecasting and mapping system for air quality in Europe, BAMS, DOI: 10.1175/2008BAMS2390.1 Schultz Martin G. Tinus Pulles, Roel Brand, Maarten van het Bolscher, and Stig
- B. Dalsøren (2005), A global data set of anthropogenic CO, NOx, and NMVOC emissions for 1960-2000
- Schultz Martin G., Angelika Heil, Judith J. Hoelzemann, Allan Spessa, Kirsten Thonicke, Johann Goldammer, Alexander Held, and Jose M.C. Pereira, Global Emissions from Vegetation Fires from 1960 to 2000, 2005, Global Biogeochemical Cycles.
- Schultz, M. and Sebastian, R. 2007 : Emission data sets and methodolo-gies

for estimating emissions, available at: http://retro-archive.iek.fzjuelich.de/data/documents/reports/D1-6 final.pdf.

- Wild, O., X. Zhu, and M. J. Prather (2000), Fast-J: Accurate simulation of inand below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37, 245 – 282.
- WMO. 2015. Guidelines on Multi-hazard Impact-based Forecast and Warning Services. WMO-No. 1150.
- WMO. 2021. Guidelines on Multi-hazard Impact-based Forecast and Warning Services (WMO-No. 1150), Part II: Putting Multi-Hazard IBFWS into Practice (2021)
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, 2021. Licence: CC BY-NC-SA 3.0 GO. https://www.who.int/ publications/i/item/9789240034228.
- http://accent.aero.jussieu.fr/RETRO metadata.php
- http://ftp.cptec.inpe.br/pesquisa/bramsrd/BRAMS 5.4/BRAMS/documentati on/guide-PREP-CHEM-SRC-1.8.3.pdf
- http://gcc.gnu.org/wiki/GFortran
- http://www.open-mpi.org
- http://www.unidata.ucar.edu/
- https://nco.sourceforge.net/
- https://tropo.gsfc.nasa.gov//gocart/
- https://www.ceip.at/webdab-emission-database/emissions-as-used-in-emepmodels
- https://www.cptec.inpe.br/
- https://www.ecmwf.int/en/forecasts/dataset/macc-reanalysis
- https://www.ingurumena.ejgv.euskadi.eus/r49aa17a/es/aa17aCalidadAireWar/
- https://www.lmd.polytechnique.fr/chimere/olddoc/CHIMEREdoc2014b.pdf
- https://www.mmm.ucar.edu/models/wrf
- https://www.nco.ncep.noaa.gov/pmb/products/gfs/
- https://www.python.org/
- https://www2.acom.ucar.edu/wrf-chem

6. Acknowledgments

The authors would like to thank the Emergencies and Meteorology Directorate, the Security Department and Basque Government for operational service financial support and all our colleagues from Tecnalia and Euskalmet for their daily effort in promoting valuable research and services for the Basque community.

EUSKO JAURLARITZA

SEGURTASUN SAILA

Larrialdiei Aurre Egiteko eta Meteorologiako Zuzendaritza

GOBIERNO VASCO

DEPARTAMENTO DE SEGURIDAD *Dirección de Atención de Emergencias y Meteorología*

Thank you for your attention : QUESTIONS ?

We would like to thank WRF community, CHIMERE developers, python community and all institutions and people that maintain and support availability of free data and software for the Scientific Community.

