

Assessing the cloud representation of two global atmospheric models using multiple overpasses of CloudSat-CALIPSO over an Arctic cyclone

Meryl WIMMER^{1,2},

L. HOFMANN³, C. AUBRY^{4,5}, G. RIVIERE², J. DELANOË⁵, É. BAZILE⁶, E. VIGNON²

¹CNES, ²LMD-CNRS, ³CEA, ⁴DLR, ⁵LATMOS, ⁶CNRM (Météo-France – CNRS)

Contact : <u>meryl.wimmer@lmd.ipsl.fr</u>

Study Case: Arctic Cyclone in May 2019

- Born: 2019-05-09 in Russia
- End: 2019-05-16 near Svalbard
- Characteristics:
 - Long life
 - Small deepening (near 998hPa)
 - Brings humidity in Arctic Area
 - 20 overpasses of CloudSat and CALIPSO
 - Availability of DARDAR products and model simulation

Minimum of MSLP during the Arctic cyclone trajectory (ERA5 data)

Atmospheric models

ARPEGE

<u>Resolution</u>: 5-24km, 105 levels <u>Initialisation</u>: 4DVar analysis (2019-05-12 at 00UTC) <u>Type of simulation</u>: "Free" Forecast

Simulations:

- Operational liquid/ice partition function
- liquid/ice partition function tested in Ricaud et al. (2020)

LMDZ

Resolution: Zoom configuration with 50km in Svalbard, 95 levels Initialisation: ERA5 (2019-05-12 at 00UTC) Type of simulation: nudging to ERA5 outside the zoom

Simulations:

CMIP7.1b version

Outputs:

- time: 3h
- lonxlat : 0,5° x 0,5
- 18 pressure levels
 (50hPa resolution)

Observations: DARDAR products

Radar:

- Sensitive to diameter of particules
- Detects ice cristals
- Use to determine IWC

Lidar:

- Sensitive to concentration of small particules
- Detects small cristals and liquid droplets
- Use to determine LWC and IWC

Example of one satellites overpass: #2019133004652 69455 crossing warm and cold front

70°N

67.5°N

65°N

62.5°N 60°N

57.5°N

55°N

52.5°N

50°N

47.5°N

45°N

10°W

0°

DARDAR Products : 20190513 02UTC

Shading: Hydrometeors categorization ; black contours: Temperature (°C) ; red contours: θ_F (K)

Comparison of IWC

Shading: IWC (g.m⁻³) ; black contours: Temperature (K) at 2019-05-13 OUTC

DARDAR obs at ARPEGE resolution

DARDAR obs at ARPEGE modified resolution

DARDAR obs at LMDZ resolution

ERA5

ARPEGE

ARPEGE modified

LMDZ

Comparison of LWC

Shading: LWC (g.m⁻³) ; black contours: Temperature (K) at 2019-05-13 OUTC

DARDAR obs at ERA5 resolution

DARDAR obs at ARPEGE resolution

DARDAR obs at ARPEGE modified resolution

DARDAR obs at LMDZ resolution

ARPEGE

ERA5

ARPEGE modified

LMDZ

Comparison of hydrometeors categorization

DARDAR's categorization

Model categorization (ex : LMDZ)

Shading: Hydrometeors categorization ; black contours: Temperature (°C) ; red contours: θ_E (K)

Over-representation of ice in mid-troposphere in observation

Observations :

Delete some data in order to keep data only where there are signals from radar and lidar simultaneously, namely :

- where lidar signal is extinguished or attenuated
- where there is a clutter in radar signal

Models :

Delete datas where:

- $IWC < 5 \times 10^{-2} g. m^{-3}$ where radar cannot detect
- $LWC > 1 \times 10^{-1} g. m^{-3}$ where lidar is attenuated

200

1000

Pressure (hPa)

Time (h)

Sensitivity to ice/liquid partition function and ratqs

IWC + LWC

RWC + LWC

- LWC

- RWC

- ClearSky

Shading: Hydrometeors categorization ; black contours: Temperature (°C) ; red contours: θ_E (K)

Ice/liquid partition function on occurrence: according to temperature and distance to cloud top Statistics on all satellite overpasses

Temperature (°C)

ARPEGE modified

10

Conclusion and outlooks

Conclusion:

- Higher IWC with LMDZ, closer to DARDAR observation
- LWC in models is very far away from observation
- Liquid water occurrences:
 - Over-estimation at low temperature (-20° 0°)
 - Under-estimation at very negative temperature (-40°C)
 - Models do not consider a dependence on distance to cloud top
- Changing the **ice/liquid partition function**:
 - Decreases IWC
 - Allows supercooled liquid water at higher altitude

Outlooks:

- Look at LMDZ simulation with a **new ice/liquid partition function** depending on temperature and distance to cloud top
- Look at ice/liquid partition function according to **content** and not only occurrences
- Use mask based on radar reflectivity and lidar backscatter with COSP simulator

Thank you for your attention