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Introduction

• For wind resource assessment the wind 

distribution has to be known

• Mesoscale models are frequently used for 

assessing wind resources

• Typical resolutions are 1-3 km, higher 

resolution very expensive for multiyear 

runs.

• This is typically not enough to resolve 

microscale flow features, particularly over 

land

• Here we show:

– Illustrations of microscale effects on the 

flow near a coastal site

– A tool chain that couples these models 

and a validation
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WRF setup NEWA

• WRF 3.8.1

• CORINE land cover

• SRTM elevation

• MYNN PBL scheme

• Boundary conditions ERA5

• 3 x 3 km horizontal res

• 61 vertical levels

• Ref: Hahmann et al (2020)

Normalized wind speed at 50 m agl
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Two meteorological masts

• One mast 241 m north of row 

and one 241 m mast in the 

southerly end

• Equipped with cup and sonic 

anemometers
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Balcony experiment NEWA

• 2 Scanning lidars installed at 50 

m above the ground

• Scanning using 45 line-of-sight 

in 90 degree plain

• Range gates varying from 105 

to 7000 m

• 1 scan of full plain in 45 sec

• 2016-04-12 to 2016-06-17, 66 

days (1584 hours)

• Wind speed and direction 

reconstructed on a ~7x7 km 

area with 100 m resolution

• Ref: Karagali et al. (2018)
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Normalized wind speed at 50 m agl
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Normalized wind speed from wind 

lidars at 50 m agl

~4.5 km
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Elevation contours

• Danmarks Højdemodel (lidar 

based vector data) 

• Ref: QGIS WAsP plugin (2022)
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Normalized wind speed from wind 

lidars at 50 m agl
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Roughness contours

• CORINE 2018 (vector data) 

• Ref: QGIS WAsP plugin (2022)
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Normalized wind speed from wind 

lidars at 50 m agl
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Normalized wind speed at 50 m agl 

using microscale model WAsP
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Climatological behaviour of the wind

• Averaged over a sufficiently long 

time, for a particular wind direction 

sector near always resembles a 

Weibull distribution

• A is the scale parameter

• K is the shape parameter

The higher the k, the more narrow 

the distribution is.
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Transforming wind distribution with height and 

roughness
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Modelled

NEWA WRF Microscale
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Validating the NEWA downscaling method
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Comparison of:

1. NEWA microscale model chain 

(Hahmann, 2020)

2. New model chain developed based on 

PyWAsP and using stability data from 

mesoscale model (Floors, 2023)

 

• 26 masts with time series were selected 

within the NEWA Central Europe domain

• Elevation data NASADEM 30 m 

resolution

• CORINE vector data for roughness maps
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Power density downscaled WRF vs. obs.
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NEWA mean error: 21.2%

NEWA + stability mean error: 14.7%

• Plain comparison between 

measurement campaigns 

(typically 1-5 yrs)

• The WRF simulations are 

based on 30 yrs, so year-to-

year variability might contribute 

to errors.
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Power density downscaled WRF + LTC vs. obs.
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NEWA mean error: 15.6%

NEWA + stability mean error: 10.3%

• Measurements corrected to 

same 30 yr period using 

variance ratio method
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Conclusions

• Microscale effects contribute to +- 30% of variation in mean wind speed at 50 m over a 

relatively flat forested coastal site

• Microscale model was able to capture areas of most speed-up and speed-down

• Incoorporating a newly developed stability model improved the power density predictions 

of a model chain involving WRF and WAsP.

• Year-to-year variations explained part of the mismatch between model results and 

measurements.

Next steps: 

• Checking model chain for ‘correct’ periods without LCT

• Look at more micrometeorological ‘complex’ sites
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