

Numerical weather forecasts supporting the Renewable Energy Sector (RES) in Poland

Joanna Wieczorek¹, Bogdan Bochenek¹, Jakub Jurasz², **Adam Jaczewski**¹, Marta Gruszczynska¹, Mariusz Figurski¹, Andrzej Mazur¹, and Tomasz Strzyzewski¹

¹ Institute of Meteorology and Water Management - National Research Institute ² Wroclaw University of Science and Technology

Modern digital Atlas of Small-scall Wind Power for Poland (AMEW–PL)

Average annual total useful wind energy (left) and wind speed (right) at 10 m a. g. l. based on INCA-PL2 reanalyses for 2019.

Average wind speed at 10 m a. g. l. in open area in January 2019 at two example locations

Skała k. Krakowa

Forecast service for the Renewable Energy sector

Example maps of capacity factor for 8.2 kW wind turbine installed at 10 m a. g. l. (on the left) and PV module of southern exposure, and 30° tilt (on the right).

An example series of forecasted values of the rated power for an 8.2 kW wind turbine installed at 10 m a. g. l. (on the left) and a PV module with southern exposure and 30° tilt (on the right).

<u>adam.jaczewski@imgw.pl</u> , Institute of Meteorology and Water Management - National Research Institute Centre of Numerical Weather Prediction, Warszawa, Poland