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1.- Motivation

Current limitations:
• Meteorological Stations : While they provide realistic observations, showing local or 

extreme events, they are not gridded data.
• NWP models : They provide gridded data but often fail to capture local or extreme events, 

particularly in complex orographic areas (e.g., Valencia region). Additionally, they require 
substantial computational resources, specially at high spatial/temporal resolutions.

Accurate forecasting of near-surface wind speed (NSWS) on a gridded product is of significant 
importance due to its impact on various socioeconomic and environmental sectors. For example, the
integration of wind power into the energy mix is critical in the transition to renewable energy. This 
is evident in several European countries where wind energy constitutes a substantial portion of the 
electricity supply—Denmark (50%), Ireland (40%), and Spain (23%) being prime examples. The 
ability to predict NSWS accurately can enhance the efficiency of wind energy production, improve 
grid stability, and contribute to better management of wind farms.

Moreover, precise wind speed forecasts are vital for a range of other applications, including weather
prediction, disaster management (such as predicting storms or other severe weather events), aviation
safety, and even ecological studies where wind patterns can affect species distribution and 
migration. Therefore, developing robust methods to predict NSWS with high spatial and temporal 
resolution is of high importance.

Despite the critical need for accurate wind speed forecasting, current methodologies face several 
limitations. Numerical Weather Prediction (NWP) Models, which is one of the most used today, are 
able to generate gridded data, which is essential for creating continuous wind speed maps. However,



these models often struggle to accurately capture local and extreme wind events, particularly in 
areas with complex orography, such as the Valencia region in Spain. This is because NWP models 
rely on physical equations that might not fully account for the micro-scale processes driving these 
events. Additionally, NWP models are computationally intensive, especially when high spatial (e.g.,
1 km) and temporal (e.g., hourly) resolutions are required. Running these models operationally can 
be expensive and time-consuming, limiting their practical application for real-time forecasting.

Meteorological stations provide highly accurate and realistic observations of wind speed at specific 
locations. They are particularly good at capturing local phenomena and extreme events, which are 
often missed by broader models. Therefore, this data can be used to forcast NSWS gridded data. 
However, the data they provide is not gridded, meaning it only represents point measurements 
rather than a continuous surface over an area. This makes it challenging to create comprehensive 
wind speed maps from these observations alone.

2.- Objective

The objective of the research group of CLIMATOC-Lab in Valencia, Spain, is to develop an 
artificial intelligence (AI) based tool for short term forecasting (less than 12h, providing hourly 
maps and with an hourly update frequency, σ=1h) of gridded NSWS data using AEMET 
meteorological observation data. The tool utilizes a two stage deep learning (DL) approach, which 
should be developed and tested:

• Infilling Stage: The first stage focuses on infilling incomplete NSWS maps using a U-Net 
neural network (NN). U-Net is particularly well-suited for this task as it is a type of 
convolutional neural network (CNN) that has shown great promise in tasks requiring high-
resolution outputs, such as image segmentation. Furthermore, this DL model uses a loss 
function defined and tested by the NVIDIA research group [1], specially optimized for the 
task of filling large holes in a photo. In this context, the U-Net will take the scattered 
meteorological observations and generate a complete, gridded map of NSWS, effectively 
“filling in” the gaps where direct measurements are unavailable.

• Prediction Stage: The second stage uses an encoder-decoder DL model based on mixed 
convolutional layers (Conv NN) and Long Short-Term Memory (LSTM) layers [2], to 
predict future NSWS maps based on the infilled maps from the first stage. LSTM networks 
are a type of recurrent neural network (RNN) that are well-suited for time series forecasting 
because they can learn temporal dependencies and patterns from sequential data. By 
incorporating convolutional layers, the model can also capture spatial dependencies, making
it ideal for predicting wind speed patterns over time across a grid, what is called spatial-
temporal sequence forecasting (STSF).   

  
The resulting model will be capable of generating predictions quickly (within a few seconds), 
leveraging the strengths of both observational data (accuracy in capturing extreme and local 
phenomena) and reanalysis data (spatial and temporal continuity). This model should be able to 
produce high-resolution predictions (with spatial resolutions on the order of 9 km or less and 
temporal resolutions of 1 hour or less) that can be used in near real-time applications.

In the future, the tool could be integrated into an Early Warning System (EWS) to provide high-
resolution, near real-time wind speed forecasts. Such a system could be invaluable for wind energy 
operators, emergency response teams, and other stakeholders who rely on accurate and timely wind 
speed information.

https://climatoclab.csic.es/es/inicio/


3.- Dataset

For the meteorological station data used in this study, we will utilize data provided by the official 
State Meteorological Agency of Spain (AEMET) [3]. The AEMET network comprises 
approximately 1,000 meteorological stations uniformly distributed across Spain. The density of this 
network is crucial, as it determines the initial amount of information available for the model to infill
the gridded map. A preprocessing stage will be applied to clean the observational data which 
includes removing outliers, that is, unrealistic data, likely caused by anemometer  malfunctions, 
remove consecutive duplicates and homogenizing possible abrupt changes, that may be the result of
anemomenter replacements.

To train the deep learning models, we will use the ERA5-Land dataset provided by the European 
Centre for Medium-Range Weather Forecasts (ECMWF), which was download from the 
Copernicus Climate Change Service Climate Data Store (CDS) of the ECMWF [4]. Specifically, it 
was used the 10 meters wind speed components (U, V) . Then, the scalar wind speed was calculated
as the square root of the square of its components. The data were collected with a spatial resolution 
of 9km and a temporal resolution of 1 h between 1 January 2010 and 31 December of 2021 (12 
years) on a spatial grid over Spain, specifically between the coordinates latitude = [45.9 - 31.6] and 
longitude = [-9.8 – 4.5]. The selection of this dataset is critical, as it will determine the spatial and 
temporal resolution of the gridded maps produced by the models.

In both DL models, Infilling and Prediction, the ERA5-Land dataset was divided into three subsets: 
a training dataset (2010 to 2019, 10 years), a validation dataset (2020, 1 year), and a test dataset 
(2021, 1 year). Each model was trained using the training dataset, with hyperparameter optimization
performed on the validation dataset. In the future, the different optimized models will be tested on 
the test dataset to select the best one. Their performance on the AEMET dataset will serve as a 
second and more critical evaluation, as this represents the model's final intended application.

4.- Methodology

The operational metodology of the trained AI-based tool is schematically illustrated in Figure 1. As 
shown, the data from AEMET meteorological stations will be first preprocessed and then projected 
onto a grid defined by ERA5-Land. If multiple stations fall within the same grid cell, their values 
will be averaged. Next, these individual maps will be introduced into the trained Infilling model, 
which will generate the infilled maps. Finally, these maps will be grouped into blocks of 12 
(representing 12 last hours), and fed intro de trained prediction model to forecast the next 12 maps, 
corresponding to the following 12 hours. 

Figure 1.- Scheme of the operational metodology of the AI-based tool developed by the
CLIMATOC-LAB reserch group.

The methodology to train the Prediction model is straightforward as it simply uses 12 sequential 
hourly maps of ERA5-Land as input and the corresponding next 12 sequential hourly maps of 
ERA5-Land as output. However the training process of the Infilling model, schematized in Figure 
2, is more complex and requires further explanation. 



As depicted in Figure 2, training the Infilling model involves two input datasets: the ERA5-Land 
dataset and a mask dataset. The mask dataset is used to indicate, with a value of 1 or 0 for each 
pixel in each hourly map, whether it contains information, meaning whether there is a 
meteorological station measurement for that particular pixel and time. The product of these two 
datasets simulates the observational dataset.

Figure 2: Methodology of the training process for the Infilling DL model.

The loss function used for training the Infilling model was the one developed, tested and optimized 
by the NVIDIA research group [1] whereas the loss function used for training the Prediction model 
was the Mean Absolut Error (MAE), although other loss functions will be tested in a close future.

5.- Results

This section presents a summary of some of the main results obtained from the developed AI tool. It
is divided into two subsections: one for the results obtained with the Infilling model and another for 
the results obtained with the Prediction model.

5.1.- Infilling

This section presents an analysis of the Infilling DL model's performance, using both the validation 
dataset (ERA5-Land) and the AEMET dataset. It is important to note that the AEMET dataset 
contains daily measurements rather than hourly ones. These results are provisional, as we are still in
the process of obtaining the hourly AEMET dataset. We anticipate that the results with the hourly 
AEMET dataset will be more favorable, given its statistics are more comparable to those with 
which the model was trained, hourly ERA5-Land.

Figure 3 provides a visual comparison of the Infilling model's performance on the ERA5-Land 
dataset. The figure displays the input, output, and ground truth NSWS maps for a randomly selected



day and hour in 2020, which is the year used for validation. As shown, the infilled data closely 
resembles the ground truth, highlighting the strengths of the Infilling model. It can be seen that the 
model smooths the wind patterns, which is expected, as convolutional networks, which conform the
Infilling model, tend to express uncertainty in this manner.

 Figure 3.- NSWS Maps: Input (ERA5-Land), Infilled, and Ground Truth (ERA5-Land)

Figure 4 illustrates a real reconstruction of AEMET data, including the input, infilled data, and the 
input data overlaid on the predictions. As shown, the model successfully reproduces the wind 
patterns while preserving local details, effectively combining accuracy and detail.

 

Figure 4.- NSWS Maps: Input (AEMET) and Infilled.

Figure 5 displays the Pearson correlation and RMSE for each infilled map in the ERA5-Land 
validation dataset. As it can be seen, high correlation and low RMSE are obtained, given a mean 
values of corr = 0.9662 ± 0.0195 and RMSE 0.2648 ± 0.0476.



 Figure 5.- Pearson correlation and RMSE obtain for each hourly map in the ERA5-Land validation
dataset.

This plot is also shown for the AEMET data in Figure 6 and 7. As illustrated, the correlation is 
relatively high, though the errors are slightly larger, with mean values of corr=0.8370±0.0286 and 
RMSE=0.7677±0.2260. These values are still considered quite good.

Figure 6.- Pearson correlation obtain for each daily map in the AEMET dataset.

Figure 7.- RMSE obtain for each daily map in the AEMET dataset.

This analysis is also conducted along the temporal axis, evaluating the Pearson correlation and 
RMSE of the historical data for each pixel on the map. Figures 8 and 9 present these results for the 
ERA5-Land and AEMET validation datasets, respectively. As shown, high correlations and low 
RMSE values are obtained for all pixels, with mean values of corr=0.9807±0.0194 and 
RMSE=0.2481±0.1042 for the ERA5-Land data, and corr=0.7036±0.2304 and 
RMSE=2.6515±0.8941 for the AEMET data.



Figure 8.- Pearson correlation and RMSE obtained for each pixel in the ERA5-Land dataset.

 Figure 9.- Pearson correlation and RMSE obtained for each pixel in the AEMET dataset.

Figure 10 presents the historical data for three randomly selected grid points, representing 
approximate locations in Galicia, Madrid, and Valencia. It also includes a difference map for a 
randomly chosen day. As shown, the data for these locations are quite similar, with only minor 
differences, indicating that the model effectively reproduces NSWS data and patterns.



Figure 10.- Left: Historical data of ground truth (red) and infilled (blue) ERA5-Land data for three
random locations marked on the map with white squares. Right: Map showing the difference in

wind speed between infilled data and ground truth for a random day and hour from the validation
dataset.

Additionally, Figure 11 shows the mean wind speed for each map over time for both ERA5-Land 
and infilled data. As shown, the two datasets looks like very similar.

Figure 11.- Mean wind speed of each hourly map over time, comparing ERA5-Land data and
infilled data.

Figure 12 displays the wind speed distribution for both ground truth and infilled data. The model 
effectively reproduces the wind speed data, with differences in maximum, mean, and standard 
deviation ratios all less than 0.7%.



 Figure 12.- Distribution of wind speed for ground truth ERA5-Land data compared to infilled data.

Figure 13 shows the wind speed distribution for both AEMET data and infilled data, where we can 
see that the Infilling model is able to effectively reproduces that distribution. 

Figure 13.- Distribution of wind speed for AEMET input data compared to infilled data.

Finally, all the percentiles between 1 and 100 in steps of 0.1 are calculated. Figure 14 shows a 
comparison of the violin diagram of the percentiles measured for ERA5-Land dataset and the 
Infilled NSWS maps. As can be seen both are quite similar.  



Figure 14.- Violin diagram comparing the percentiles (from 0 to 100 in steps of 0.1) of both, left)
ERA5-Land dataset and Infilled data and right) AEMET input and Infilled data.

5.2.- Prediction

This section analyzes the Prediction DL model's performance using the ERA5-Land validation 
dataset. The model's evaluation with the AEMET dataset will be conducted shortly.

Figure 15 visually compares a random the Prediction model's performance on the ERA5-Land 
dataset. The figure shows the input, output, and ground truth NSWS maps for a set of 12 sequential 
maps, randomly selected from the year 2020, which was used for validation. As shown, the 
predicted data are very close to the ground truth, demonstrating the strengths of the Prediction 
model. It is evident that the model performs best for the initial predicted NSWS maps (i.e., the first 
few hours), while the later hours, although slightly less accurate, still produce good results. As seen 
in this figure, the longer the prediction horizon, the smoother the wind speed patterns become in the
predictions. This is expected, as convolutional networks, which conform the Prediction model, 
typically express uncertainty in this way. Depending on the application, it may be worth considering
a shorter prediction horizon for more precise results. However, since the predictions for the later 
hours are sufficiently accurate, we will maintain the 12-hour horizon, as it offers invaluable insights
for potential use as an early warning system.





Figure 15.- Bunch of 12 sequencial prediction NSWS maps; Input (ERA5-Land), Prediction and
Ground true (ERA5-Land).

Figure 16 and 17 shows, respectively, the Pearson correlation and RMSEfor each predicted NSWS 
map in the ERA5-Land validation dataset. Although high correlation and low RMSE values are 
generally achieved, with mean values of corr=0.8486±0.1176 and RMSE=0.5735±0.2710, there are 
some NSWS maps that are particularly challenging for the model to predict. This may be due to 
meteorological situations that are underrepresented in the training dataset. Further analysis will be 
conducted, and strategies for addressing unbalanced data will be applied to improve performance.

Figure 16.- Correlation of each individual NSWS predicted map.

Figure 17.- RMSE of each individual NSWS predicted map.

Figures 18 and 19 show the Pearson correlation and RMSE for each prediction horizon, 
respectively. As anticipated, the results worsen with increasing prediction horizons, with mean 
correlation values falling below 0.75 and RMSE values exceeding 0.8 m/s



Figure 18.- Mean Pearson Correlation for different prediction horizons. 

Figure 19.- Mean RMSE for different prediction horizons.

Similar to the Infilling part, this analysis is also conducted along the temporal axis, evaluating the 
Pearson correlation and RMSE of the historical data for each pixel on the map, which is shown in 
Figures 20. As shown, high correlations and low RMSE values are obtained for all pixels, with 
mean values of corr=0.8854 ± 0.0213 and RMSE=0.6179 ± 0.1430.



Figure 20.- Correlation and RMSE of the historical data for each individual pixel of the NSWS
map.

Figure 21 presents the historical data for three randomly selected grid points, representing 
approximate locations in Galicia, Madrid, and Valencia. It also includes a difference map for a 
randomly chosen day. As shown, the historical data for these locations are quite similar, with only 
minor differences on the map, though slightly larger discrepancies appear in some mountainous 
areas. This indicates that the model effectively reproduces NSWS data and patterns.

Figure 21.- Left: Historical data of ground truth (red) and infilled (blue) ERA5-Land data for three
random locations marked on the map with white squares. Right: Map showing the difference in

wind speed between infilled data and ground truth for a random day and hour from the validation
dataset.

Additionally, Figure 22 shows the mean wind speed for each map over time for both ERA5-Land 
and infilled data. As shown, the two datasets looks like very similar.



FIGURE 22.-Mean wind speed of each hourly map over time, comparing ERA5-Land data and
infilled data.

Figure 23 displays the wind speed distribution for both ground truth and infilled data. The model 
effectively reproduces the wind speed data, with differences in mean and standard deviation ratios 
all less than 7%. The maximum value achieved in the predictions is 11% lower than that of the 
validation dataset. This issue has been observed in other related studies and, in the near future, 
various strategies to address data imbalance will be implemented to help reduce this discrepancy.

Figure 23.- - Distribution of wind speed for ground truth ERA5-Land data compared to predicted
data.



Finally, all the percentiles between 1 and 100 in steps of 0.1 are calculated. Figure 24 shows a 
comparison of the violin diagram of the percentiles measured for ERA5-Land dataset and the 
predictions. As shown, although the two are quite similar, the prediction model slightly 
underestimates the higher values. 

Figure 24.- Violin diagram comparing the percentiles (from 0 to 100 in steps of 0.1) of both, left)
ERA5-Land dataset and Infilled data and right) AEMET input and Infilled data.

This difference in percentiles is more clearly illustrated in Figure 25, where the percentiles 
calculated from the model's predictions are plotted against those from the validation dataset. A y=x 
line is included to indicate what a perfect result would look like.

Figure 25.- Percentiles calculated for the predictions of the model versus the those calculated for
the  ERA5-Land validation dataset. A x=y line was added to show a perfect relation.



6.- Conclusions

The development of the AI-based tool, encompassing both the Infilling and Prediction stages, has 
shown promising results, particularly when validated with the ERA5-Land dataset. This dataset 
provides high-quality, gridded atmospheric reanalysis data, making it an excellent benchmark for 
evaluating the performance of our tool. The results indicate that the tool achieves strong 
correlations between the predicted and actual wind speed values, alongside small prediction errors, 
which suggests a high level of accuracy and reliability. This is a crucial step towards establishing 
the feasibility of this AI-tool for operational use in various applications.

The preliminary tests indicate that this AI-tool could be effectively used as an Early Warning 
System (EWS), operating in near real-time to provide timely and accurate wind speed forecasts. 
This capability is essential for applications such as wind energy management, where quick decision-
making based on accurate predictions can lead to more efficient energy production and grid 
stability. The tool’s ability to process data and produce forecasts rapidly also opens the door to its 
use in emergency situations, where immediate wind speed predictions could aid in disaster response
efforts.

The Infilling stage of the tool, which uses a U-Net neural network to generate gridded wind speed 
maps from scattered meteorological observations, has been tested using observational data from the 
Spanish Meteorological Agency (AEMET). These tests have demonstrated that the Infilling 
component performs well, achieving good correlations between the generated maps and actual 
observations, while also maintaining small errors. Importantly, the tool has shown a capacity to 
preserve extreme wind speed values, which are often critical for applications like storm forecasting 
and wind energy production. The preservation of these extreme values suggests that the Infilling 
model is robust enough to handle the variability and extremes in wind speed data, which is a 
significant advantage over traditional methods.

 Regarding the Prediction stage, which leverages a combination of Long Short-Term Memory 
(LSTM) and convolutional neural networks (Conv NN) to forecast future wind speed maps, initial 
tests using the ERA5-Land dataset have been conducted. While these tests are still in the early 
stages, they have provided valuable insights into the tool’s performance. Specifically, the 
predictions show that while the tool generally performs well, it tends to underestimate higher wind 
speed values. This underestimation of high wind speeds, which was also seen in similar works like 
[6], is a critical issue, especially in applications where accurate forecasting of extreme events is 
necessary, such as in the prevention of weather-related disasters or optimizing wind energy 
production during peak periods.

To address this challenge, further research and refinement of the Prediction model are planned. One 
potential solution is to modify the loss function used during the training of the neural network. By 
adjusting the loss function to place more emphasis on accurately predicting higher wind speeds, the 
model may improve its ability to capture these critical values. Other techniques, such as data 
augmentation, model ensembling, or incorporating additional features that better represent extreme 
wind conditions, will also be explored to enhance the model's performance.

Once the model is optimized, it will be tested using infilled AEMET wind speed maps, which 
represent its intended final application.

In conclusion, while the initial results are highly encouraging, indicating the potential for this AI-
tool to be deployed as a near real-time Early Warning System, further testing and refinement are 
necessary, particularly in improving the accuracy of high wind speed predictions. A detailed study is



planned to thoroughly assess the tool's performance across different scenarios and datasets, ensuring
its robustness and reliability for future operational use.

7.- Next Steps

Building on the promising results achieved so far, several important next steps have been identified 
to further enhance the performance and robustness of the AI-based tool, particularly in the 
Prediction stage:

• Detailed Study of Extreme Data (Prediction Stage): One of the key challenges identified in 
the initial testing is the underestimation of high wind speed values by the Prediction model. 
To address this, a detailed study focusing specifically on extreme wind speed data is 
planned. This study will involve several Explainability AI techniques to analyze how the 
model currently handles these extreme values and identifying the factors contributing to the 
underestimation. A significant part of this process will involve experimenting with 
modifications to the loss function used during training. By adjusting the loss function to give
more weight to extreme values, the model's sensitivity to these critical data points can be 
improved, leading to more accurate predictions in scenarios where high wind speeds are 
expected.

• Incorporation of Sea Areas: The current model primarily focuses on land-based wind speed 
predictions. However, incorporating data from sea areas is crucial, especially for regions 
where offshore wind energy is significant, like Spain. This step will likely require the 
development of deeper neural networks, as wind patterns over the sea can be more variable 
and influenced by different factors compared to land. Deeper networks would allow the 
model to capture these complex patterns more effectively, improving the overall accuracy of
predictions in coastal and marine environments.

• Testing Prediction with AEMET Observations: A critical next step is to test the Prediction 
model using observational data from AEMET (Agencia Estatal de Meteorología). These 
tests will provide a more rigorous evaluation of the model's performance in real-world 
scenarios, as AEMET observations represent actual, on-the-ground wind speed 
measurements. This testing phase will be essential for validating the model’s applicability 
and reliability in operational settings.

• Testing the models with higher spatial resolution datasets: To further enhance the spatial 
accuracy of the predictions, the tool will be tested with higher spatial resolution datasets. 
Two potential datasets have been identified:
◦ NEWA (New European Wind Atlas): With a spatial resolution of approximately 3 km, 

NEWA provides high-quality wind data that can help improve the model's ability to 
capture fine-scale wind patterns. 

◦ HARMONIE: Offering an even finer spatial resolution of about 1.25 km, HARMONIE 
is another promising dataset for refining the model's spatial predictions. Testing with 
these datasets will help assess the tool's performance at higher resolutions and determine
the computational trade-offs involved.

• Incorporation of Denser Meteorological Stations: Another approach to improve the model's 
accuracy, particularly in complex orographic areas like the Valencia region, is to incorporate 
data from a denser network of meteorological stations. For instance, the Valencian 
association of Meteorlogic (AVAMET), which operates a dense network of weather stations 
in the Valencia region, could provide more granular data that the model can leverage. By 



integrating this data, the model could improve its performance in predicting local wind 
phenomena and extreme events, which are often missed by broader-scale models.

• Testing Other Neural Network Architectures for Short-Term Wind Speed Forecasting 
(STSF): While the current model utilizes U-Net and LSTM Conv NN architectures, 
exploring alternative neural network architectures could lead to further improvements. Two 
promising approaches are:
◦ Generative Adversarial Networks (GANs): GANs have shown great potential in 

generating realistic synthetic data and could be adapted to improve the quality of wind 
speed predictions by creating more accurate representations of complex wind patterns.

◦ Transformers: Originally developed for natural language processing, transformers have 
recently been applied to time series forecasting with very good results. Testing these 
architectures could provide new insights and potentially lead to better performance, 
particularly in capturing long-range dependencies and complex temporal dynamics in the
data.
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