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The All-Sky Radiance (ASR) data from geostationary satellites are important for improving initial 

conditions in numerical modeling through data assimilation, as it provides dense spatio-temporal 

atmospheric information over a wide area. Accurately applying the error information inherent in 

observations is essential for enhancing its effectiveness of satellite data assimilation. In this study, 

we calculated an observation error model for the ten infrared radiation channels of the Advanced 

Meteorological Imager (AMI) on the GEO-KOMPSAT-2A (GK-2A) for the summer season using 

the standard deviation of the brightness temperature observation minus background (O-B) as a 

function of the cloud impact parameter (Ca). The normalized brightness temperature of O-B 

probability density function is scaled such that it more closely approximates a normal distribution. 

For data assimilation experiments, we used the Community Radiative Transfer Model (CRTM) as 

the satellite observation operator and applied the 3-dimensional variational data assimilation 

method of the Weather Research and Forecasting Model Data Assimilation. When applying the 

adjusted observation error model for summer precipitation cases in the Korean peninsula, both the 

analysis and forecast fields improved compared to a prescribed constant error value. The best 

rainfall forecast performance was observed in the linear model, which followed the normal 

distribution better than the high-order regression observation error model. This is thought to be 

due to the observation error in the linear model saturates more gradually, allowing for 

consideration of a wider variability of Ca, i.e., a more detailed spatial distribution of cloud impact. 

Meanwhile, the assimilation results of Clear-Sky Radiance (CSR), excluding cloud area 

information, were compared to analyze the additional effects of cloud-precipitation area 

information during ASR assimilation. Further, we plan to assimilate both the water vapor channel 

ASR and the surface-sensitive channel CSR to improve the cloud detection algorithm, quality 

control, and refine surface parameter estimates for enhanced predictability. 
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▪ All-Sky Radiance (ASR) information from geostationary satellites such as GEOKOMPSAT 

2A (GK-2A) is crucial for improving initial fields in numerical weather prediction. 

▪ Considering the complex error characteristics of ASR, properly prescribing observation 

errors is essential for the successful assimilation of ASR.

▪ Okamoto et al. (2014) suggested assigning an observation error with standard deviation 

(STD) of brightness temperature (BT) observation minus background (O-B) departure as 

a function of the symmetric cloud effect parameter, 𝐶𝐴.

Research Background Modeling and Assimilation Systems

❑ Weather Research and Forecasting Model (WRF) & WRF Data Assimilation (WRFDA) 3D-VAR

Fig. 1. WRF domain

WRF_V4.2.1 D01 D02

Resolution 9 km 3 km

Grid # 301 x 341 x 60 301 × 319 × 60

Microphysics WDM 6-class scheme

Radiation
Rapid Radiative Transfer Model longwave radiation scheme

Dudhia shortwave radiation scheme

Cumulus Multiscale Kain–Fritsch scheme

Surface Layer Revised MM5 Monin-Obukhov scheme 

Land-surface Unified Noah land-surface model

PBL Yonsei University Scheme

I.C & B.C NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses

Experiment Name Assimilated Data
Cloud Control 

Variables
BT Observation Error

CSR_LinE (Qcr)
Conventional + GK-2A  CSR: 

WV Ch 8 / 9 / 10

Total Water 
(Qc, Qr)

Linear (piecewise)

ASR_ConE (Qcr)

Conventional + GK-2A  ASR: 
WV Ch 8 / 9 / 10

Constant (O-B STD)

ASR_LinE (Qcr) Linear (piecewise)

ASR_HirE (Qcr) Higher-order regression

Same 4 experiments
(Qcrisg)

Same Qc, Qr, Qi, Qs, Qg
Same for LinE but ConE & 
HirE modeled with Qcrisg

Table 2. Experiment configurations
❑ DA Experimental setup

Case
Fig. 2. Modeling and assimilation timeline

▪ Data

▪ ASR data QC (Okamoto, 2017)

✓ if (𝐶𝐴 > 3K) && (|O-B| > 1.8* 𝐶𝐴) ⇒ QC BAD

▪ Cloud Control Variables

Table 1. WRF model configuration

▪ Establishing observation error models for the GK-2A AMI infrared (IR) channels.

▪ Investigating the impact of different observation error models in the assimilation 

experiments for summertime precipitation cases.

▪ Examining the effects of including all hydrometeors (cloud, rain, ice, snow, and graupel) 

as a control variable in the observation error model and data assimilation.

Research Goal

𝐶𝐴 =
𝐵 − 𝐵𝑐𝑙𝑟 + |𝑂 − 𝐵𝑐𝑙𝑟|

2

BT Observation Error Models for GK-2A AMI WV channels

Changes in the Analysis 

(at the last DA cycle)

PDF of Normalized O-B BT  

Improvements of 

Precipitation Forecast Score 
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Fig. 3. (a) GK-2A AMI Ch10 BT and 

(b) surface synoptic weather map at 2019.07.26.0300 UTC

Fig. 4. (Black) GK-2A BT O-B mean (dashed line) and STD (solid line), (Red) Higher-order regression and (Blue) linear model 

with the number of data points (grey bar) at each 𝐶𝐴 bin. (a1)~(a3) errors modeled with total water (Qr & Qc), and 

(b1)~(b3) with all hydrometeors as a control variable. Column 1 to 3 corresponds to each WV IR channel (Ch 8 ~ 10)

𝑂𝑀𝐵′ =
𝑂𝑀𝐵 − 𝑂𝑀𝐵

𝑆𝑇𝐷𝑂𝑀𝐵

▪ ASR observation error models for the three GK-2A AMI water 

vapor channels have been calculated as a function of symmetric 

cloud effect parameter and additional scaling process have been 

applied in Qcr experiments to achieve more Gaussian.

▪ Error modeling with Qcrisg gave normalized O-B PDF closer to 

the Gaussian distribution than Qcr, without additional scaling.

▪ We conducted ASR assimilation experiments for summertime 

precipitation cases and compared the effects of each model, by 

applying constant, linear, and higher-order regression 

observation error models.

▪ Overall, there were improvements of both methods in data  

assimilation with the analysis and forecast fields for ASR_LinE 

and ASR_HirE, showing superiority over prescribing constant 

observation errors in the all-sky regime.

▪ Assimilating ASR showed better verification statistics than CSR, 

which implies the benefit of ingesting information in cloudy areas, 

when the increased uncertainties can be properly treated.

▪ Including all individual hydrometeors as a control variable 

simulates BT closer to the observations, which leads to better PC 

scores at the initial forecast times.

# Summary

# Future Work

▪ Observation errors can reflect the scene-dependent 

O-B characteristics when modeled by 𝐶𝐴.

▪ Convective signals over the Yellow Sea are 

pronounced in all Qcr DA experiments, which are 

somewhat excessive than the real system.

▪ In Qcrisg DA experiments, background BT followed 

the observation BT more closely, therefore reducing 

the strong spurious convection over the Yellow Sea.

▪ ASR_LinE and ASR_HirE gave the overall best scores with the 

magnitude and patterns of total & hourly accumulated rainfall, 

both in Qcr and Qcrisg DA experiments.

▪ Small convective rain cells at the western coast and the rain 

band peak near 38°N were better simulated in ASR_LinE and 

ASR_HirE.

▪ By including all hydrometeors as control variables, background 

BT was closer to the observation BT (e.g. spurious convection at 

the west diminishes) ⇒ PC at initial forecast time increased.

Fig. 7. (a) Observation error and (b) O-B distribution of AMI Ch10 BT. 

Analysis departures from NoDA (DA-NoDA): (c) Temperature 

(shading), (d) WV mixing ratio (shading) and hydrometeor 

(blue contour). Analysis values of equivalent potential 

temperature (EPT) (red contour) and winds (vector) are also 

presented in (d). Control variable setting: (Left:1) Qcr and 

(Right:2) Qcrisg

① Qcr

a1

Fig. 8. Total accumulated rainfall during the forecast times (Control variable setting: Qcrisg)

▪ Further case studies with various weather systems are needed to 

draw more generalized conclusions about the effectiveness of 

different observation error models.

▪ Additional QC procedures may be suggested to retain as many 

observations as possible with more stable DA adjustment.

▪ Constructing the observation error models for the surface-

sensitive IR channels in GK-2A AMI as well, we aim to assimilate 

more information near the surface, taking into account the high 

sensitivities to clouds in these channels.

* Community Radiative Transfer Model (CRTM) 

as an observation operator

2019.07.26.1200KST

a b

Fig. 5. BT error models for GK-2A WV 

channels (red: Ch 8, green: Ch 9, 

blue: Ch 10). (a) Qcr error models 

and (b) Qcr vs Qcrisg HirE model

▪ Stationary front developed with convective cells 

along the west coast of the Korean Peninsula

▪ 2019.07.25.0300 ~ 2019.07.26.1200 UTC

a

b

② Qcrisg

a1 b1

a2 b2

Fig. 9. Score improvement rate of (a) Root Mean Square Error (RMSE) and (b) Pattern Correlation (PC) compared to NoDA. Red colors indicate better predictability. Control variable setting: (Upper:1) Qcr and (Lower:2) Qcrisg

Fig. 6. Probability density distribution of normalized O-B (OMB’) for (a1, b1) Ch 8, (a2, 

b2) Ch 9, (c) Ch 10 (a3, b3) with normal distribution (black), ConE (grey), LinE 

(blue), and HirE (red). Normalized with (a) Qcr and (b) Qcrisg error models.

▪ Maximum O-B BT STD increases as the channel goes 

from 8 (upper) to 10 (lower).

▪ BT modeling with Qcrisg reduces overall O-B STD 

with better Gaussian-shaped O-B BT distribution.

* Improvement rate = 
𝐷𝐴−𝑁𝑜𝐷𝐴

𝑁𝑜𝐷𝐴
 × 100 (%) * Major rainfall period

a1 a2 a3

b1 b2 b3

b1

c1

d1

a2

b2

c2

d2

AWS NoDA CSR_LinE ASR_LinEASR_ConE ASR_HirE

① Qcr

② Qcrisg

* Calculated with 6h of WRF-CRTM simulations

over 2020-08

𝐵: 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝐵𝑇 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠 all−sky

𝐵𝑐𝑙𝑟: 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝐵𝑇 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠 clear−sky

𝑂: 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐵𝑇 𝑜𝑓 all−sky
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b1 b2 b3

① Qcr Use total water (WV+cloud liquid water+rain water) control variable

② Qcrisg Use individual hydrometeor control variables with hard-coded error covariances

Table 3. Cloud Control Variable Options

Assimilated Data & QC

✓ Conventional data (sondes, wind profilers, AWS, GK-2A AMV)

✓ GK-2A AMI water vapor (WV) channels (Ch8/9/10) CSR / ASR


