

Analyzing climate variability of surface solar radiation parameters from the CM SAF SARAH-3 climate data record

Uwe Pfeifroth, Jörg Trentmann and the CM SAF Team

CM SAF SARAH-3

Variables

- → Surface Solar Irradiance (SIS)
- → Surface Direct Irradiance (SID, DNI)

Surface Solar Radiation

Dataset – Heliosat

- → Sunshine Duration (SDU)
- → Photosynthetic Active Radiation (PAR)
- → Daylight (DAL)
- → Effective Cloud Albedo (CAL)

Resolution

- → Spatial: 0.05° × 0.05°
- → Temporal: 30-min, daily-, monthly mean

Coverage

- → Spatial: regional (±65°)
- → Temporal: 1983 to 2020 (CDR) 2021 to date (ICDR)
- → Available at <u>www.cmsaf.eu</u>

Pfeifroth, Uwe; Kothe, Steffen; Drücke, Jaqueline; Trentmann, Jörg; Schröder, Marc; Selbach, Nathalie; Hollmann, Rainer (2023): Surface Radiation Data Set - Heliosat (SARAH) - Edition 3, Satellite Application Facility on Climate Monitoring, **DOI:10.5676/EUM_SAF_CM/SARAH/V003**.

SARAH-3 -> Improved surface irradiance over snow

internal daily snow information (HELSNOW-Algorithm)

SARAH-3 -> Improved surface irradiance over snow

internal daily snow information (HELSNOW-Algorithm)

SARAH-3 -> Improved surface irradiance over snow

> SARAH-3 shows higher surface irradiance in alpine regions

SIS (W/m2), SARAH2 and GEBA

March Climatologies

SIS (W/m2), SARAH3 and GEBA

Stations: GEBA - Global Energy Budget Archive

SARAH-3 -> Comparison to SARAH-2.1

- Changes in alpine regions due to improved treatment of snow
- Changes in subtropics due to new surface albedo auxiliary data
- Daily ERA-5 auxiliary data (water vapor and ozone)
- > Aerosol climatology, as in SARAH-2.1

SARAH-3 – Validation

daily surface irradiance vs. BSRN stations

data	Ndays	Bias [W/m2]	MAD [W/m2]	AnomCor
SARAH-3	84.789	2.18	10.9	0.96
SARAH-2.1 + ICDR	84.815	1.52	11.5	0.95
SARAH-2.1	72.087	1.51	11.7	0.95
SARAH-2	57.128	1.74	11.8	0.95
SARAH	48.605	1.12	12.1	0.95
MVIRI	29.790	4.41	15.1	0.92

High quality of SARAH-3

Continuous improvement of SARAH data records

BSRN: CLIMAT: Baseline Surface Radiation Network Collection of monthly meteorological data from stations

monthly sunshine duration vs CLIMAT stations

SARAH-3 – Validation > daily SSR, comparison to other data records

data	Mean SSR [W/m2]	Bias [W/m2]	MAD [W/m2]	RMSE [W/m2]	MAD [W/m2]	RMSE [W/m2]
ERA-5	134.4	2.7	19.3	27.8	7.1	9.2
CAMS-RAD 4.6	134.3	2.3	10.5	14.5	5.9	7.3
SARAH-3	134.4	2.7	10.9	15.2	5.9	7.2
CLARA-A3	133.3	1.0	11.8	16.6	5.0	6.4
SARAH-2.1	133.8	2.1	11.3	15.6	5.9	7.3
CLARA-A2.1	133.0	-2.5	12.9	18.1	5.8	7.6

Courtesy: Ruben Urraca; numbers taken from Urraca et al., 2024, under review

Trends and variability of global radiation in Europe: Comparison with GEBA*

* GEBA: Global Energy Budget Archive, https://geba.ethz.ch

- Small negative trend in the bias
- Higher deviations in early years

Selection of GEBA-stations in cooperation with R. Urraca

Trends and variability of global radiation in Europe: Comparison with GEBA*

GEBA SIS Trendraster-Plot [W/m2/decade], Europe, 1983-2020

start

Discussion on causes for postive trend in surface radiation in last 3 to 4 decades (given the SARAH-3 data record and algorithm):

- Clouds mostly determined variability and trend
- Aerosol indirect effects observed through clouds (brighter and live longer)
- Aerosol direct effect not accounted for in SARAH data record
 - Underestimation of trend (~20 %)

Challenges

- > Aerosol data quality and availability for the full satellite-era
- Stability of satellite data records
- Reference data quality and availability

0000

Effect of aerosol on bias in SARAH-3 Sunshine Duration

0.20 6 SARAH-3/CLIMAT mean: 9,496 SARAH-2.1+/CLIMAT mean: 12.33 - Stratospheric AOD at 550nm Pinatubo erruption leads to positive bias 8 Stratopsheric AOD at 550nm 0.15 ຊ BIAS (h) 0.10 9 0.05 0 0.00 우 1990 2000 2010 2020

BIAS, SDU (1983-2020)

More deviations in early years of data record

Trend (1991-2020) in global irradiance from SARAH-3

Application of the CM SAF radiation data records

- Climate analysis, Trend Analysis (e.g. Pfeifroth et al., 2018)
- Solar energy assessments and modelling / Solar Atlases (e.g. Druecke et al., 2021)
- Climate Monitoring (e.g. Copernicus European State of the Climate reports, WMO Regional Climate Center)
- Evaluation of (climate) model simulations (e.g. Katragkou et al., 2015)
- → Combination with station data (best of both worlds) (e.g. Zak et al., 2015)
- → Quality control of surface measurements (e.g. Urraca et al., 2017)
- → Agrometeorology and Biology (e.g. Pelosi et al., 2022)
- → See <u>www.cmsaf.eu</u> \rightarrow Outreach \rightarrow <u>Applications</u>
- Many peer-reviewed publications

Anomaly Service ... currently set up in close cooperation with EUMETSAT Surface solar radiation anomaly **August 2024** (Reference period:1991-2020)

Sunshine duration for Spain for 2024

Sunshine Duration anomaly (Spain)

2024 vs. Climatology (Spain)

Summary

- → SARAH-3 provides various surface radiation parameters for a wide range of applications
- → offers high quality and covers more than 40 years
- covers the current climate normal period
- provides consistent near-realtime processing of all parameters (ICDR)
- → data freely available via https://wui.cmsaf.eu
- → DOI: 10.5676/EUM_SAF_CM/SARAH/V003
- → ESSD paper: Pfeifroth et al. 2024 [preprint], https://doi.org/10.5194/essd-2024-91

Deutscher Wetterdienst

Workshop on latest developments on satellite climate data supporting climate services and NMHSs

Date: 24 October 2024 Location: Deutscher Wetterdienst, Offenbach, Germany & Online

