ANN-based parameter regionalization for distributed hydrological models used for low-flow simulation over ungauged French catchments

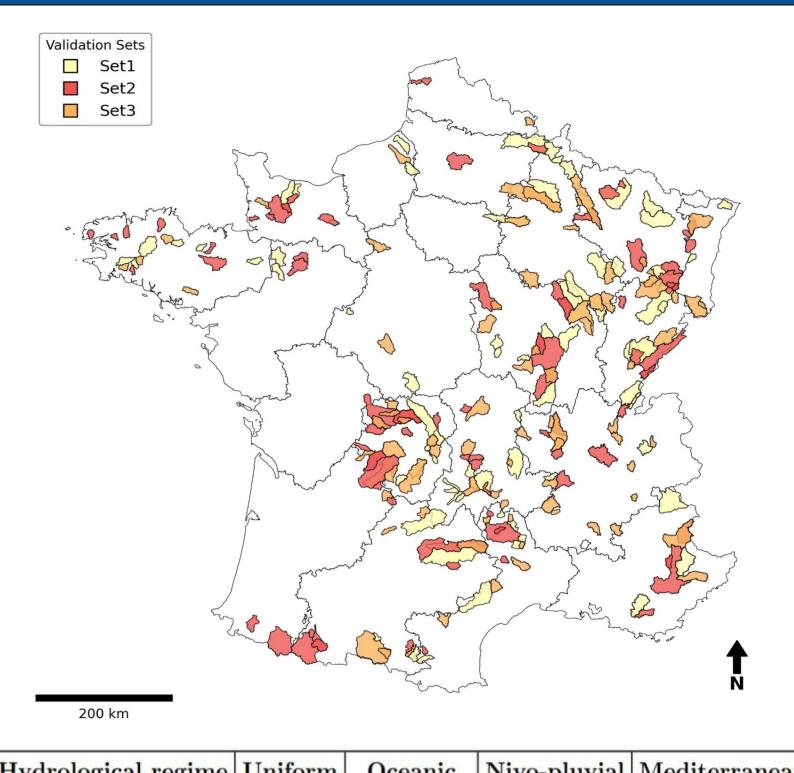
Thomas de Fournas, Nathalie Folton, François Colleoni, Ngo Nghi Truyen Huynh, Pierre-André Garambois INRAE, Hydrology Research Team, Aix-en-Provence, France

1 Our objectives

- Evaluate hydrological models for low-flow river basins using the SMASH platform, which incorporates models inspired by the GR model family.
- Evaluate the performance of these models in reproducing low flows, seasonality, and water balance across a series of basins covering France, using uniform calibration techniques and regionalization approaches.
- Incorporate an Artificial Neural Network (ANN) to process basin descriptors specific to France, enhancing regionalization exploration and establishing meaningful correspondence between these descriptors and model parameters.

2 Dataset

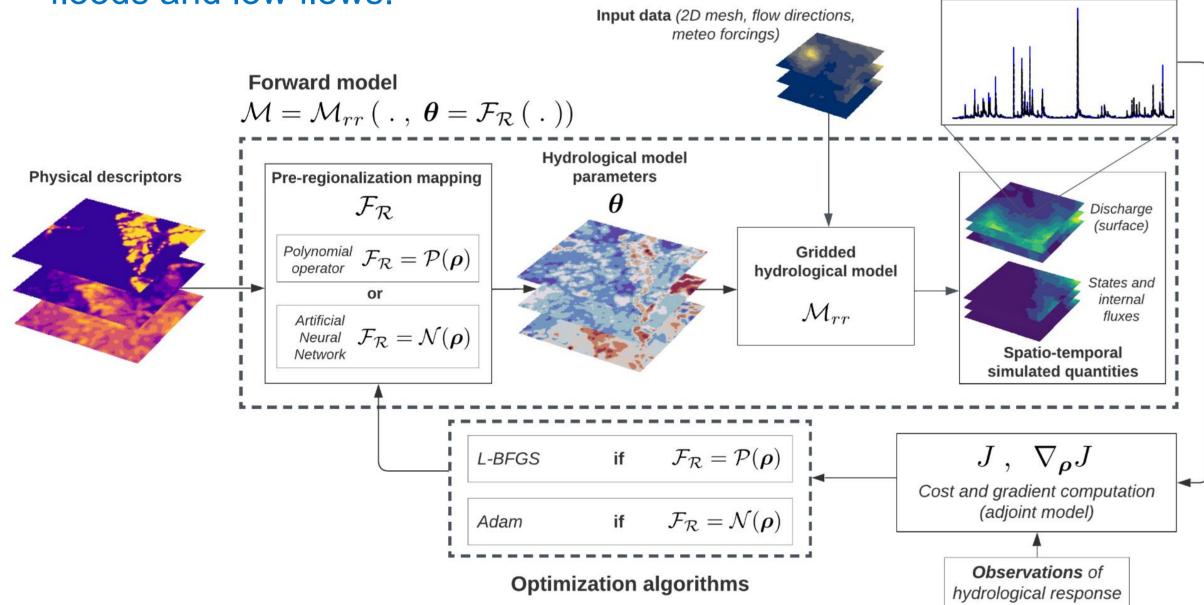
- Set of **248** catchments (split into 3 sets of validations) throughout French territory:
 - data available for at least 40 years between 1975 and 2018,
 - Naturals with limited human influence and surfaces
 2 000 km²,
 - Various hydro meteorological regimes
- Daily meteorological data come from the distributed mesoscale atmospheric analysis system SAFRAN^[1]: estimations of daily solid and liquid precipitations temperatures and evapotranspiration on a regular square grid at the spatial resolution of 8*8 km²
- Daily streamflow data from the French database HYDRO
- Corine Land Cover and the International Hydrogeological Map of Europe^[2](Lithology) maps to create descriptor maps for the ANN.



Hydrological regime Uniform Oceanic Nivo-pluvial Mediterranean Count (%) 11 (4.4%) 189 (76.2%) 40 (16.1%) 8 (3.2%)

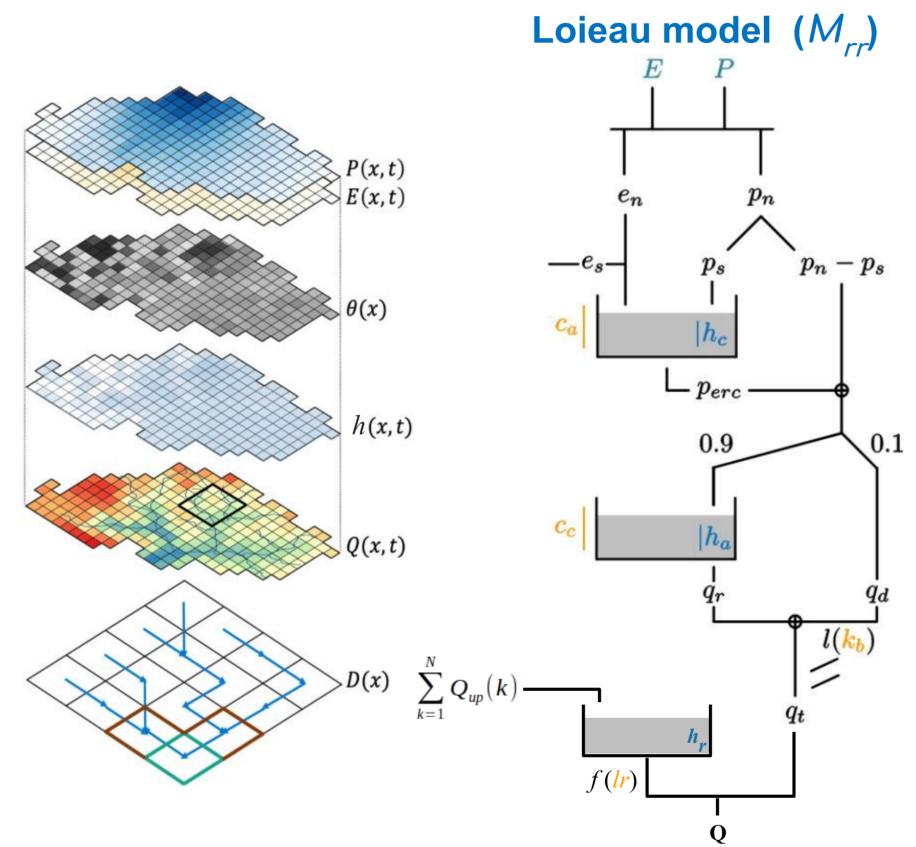
3 Methodology

- **♦ SMASH**^[3] Platform (Spatially-distributed Modelling and ASsimilation for Hydrology)
- SMASH is a computational software framework enabling to tackle spatially distributed differentiable hydrological modeling, with learnable parameterization-regionalization.
- It is designed to simulate discharge hydrographs and hydrological states at any spatial location within a basin, enabling the hydrological response of contrasted catchments, both for operational forecasting of floods and low flows.



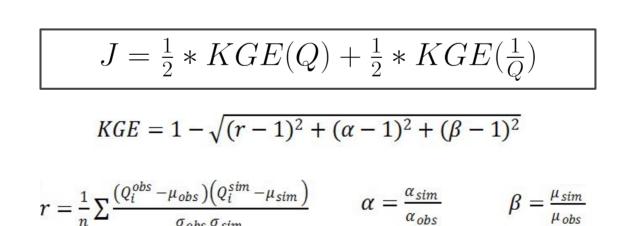
• Physical descriptors (e.g., land cover, hydrogeology) are linked to model parameters using either multiple linear regression (ML) or multilayer perceptron (MLP) artificial neural networks (ANN)^[4], where coefficients or weights are optimized and iteratively updated at each step of the optimization algorithm in order to minimize the cost function.

Modeling Setup and Evaluation Metric



LoiEau_J^[5]: a conceptual daily model associated with 3 hydrological parameters and 1 routing parameter.

Cost Function: Criteria combined^[6]:



Temporal validation:

- P1 (1976–1996, +1 yr warm-up) → Calibration
- P2 (1998–2018, +1 yr warm-up) → Validation

Spatio-temporal cross-validation:

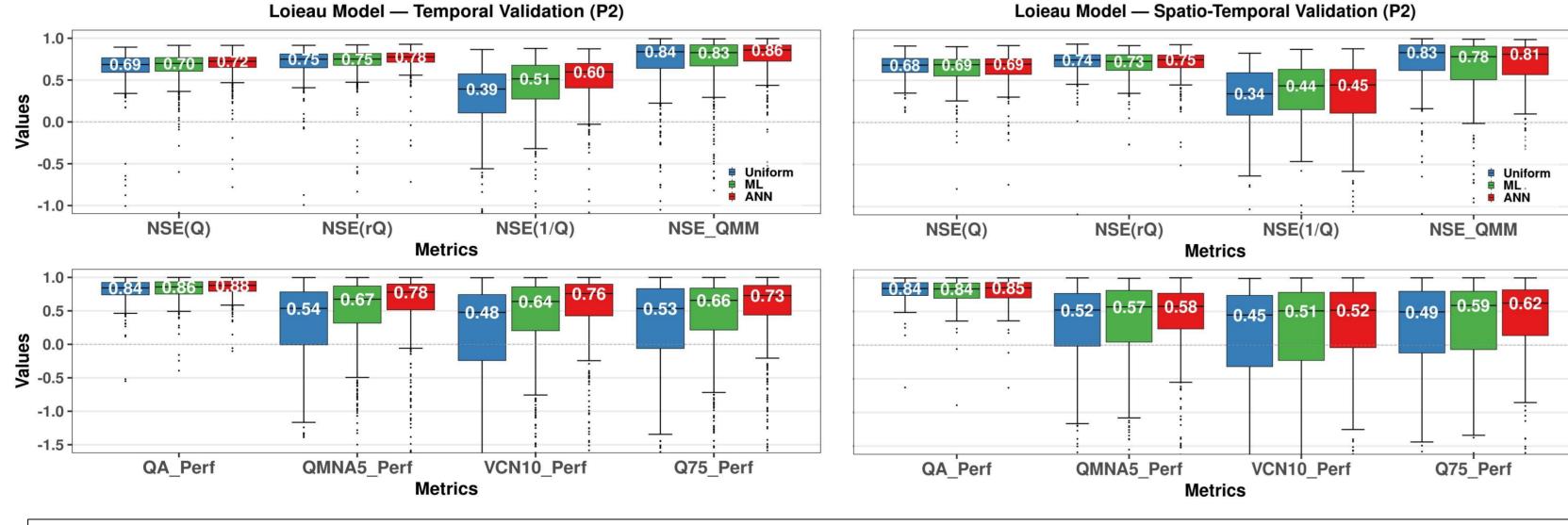
- 3 randomized basin splits
- Per split:
 - -Calibration (²/₃ catchments)
- -Validation (1/3 catchments)
- Ensures robustness & tests spatial transferability of regionalized parameters to ungauged basins

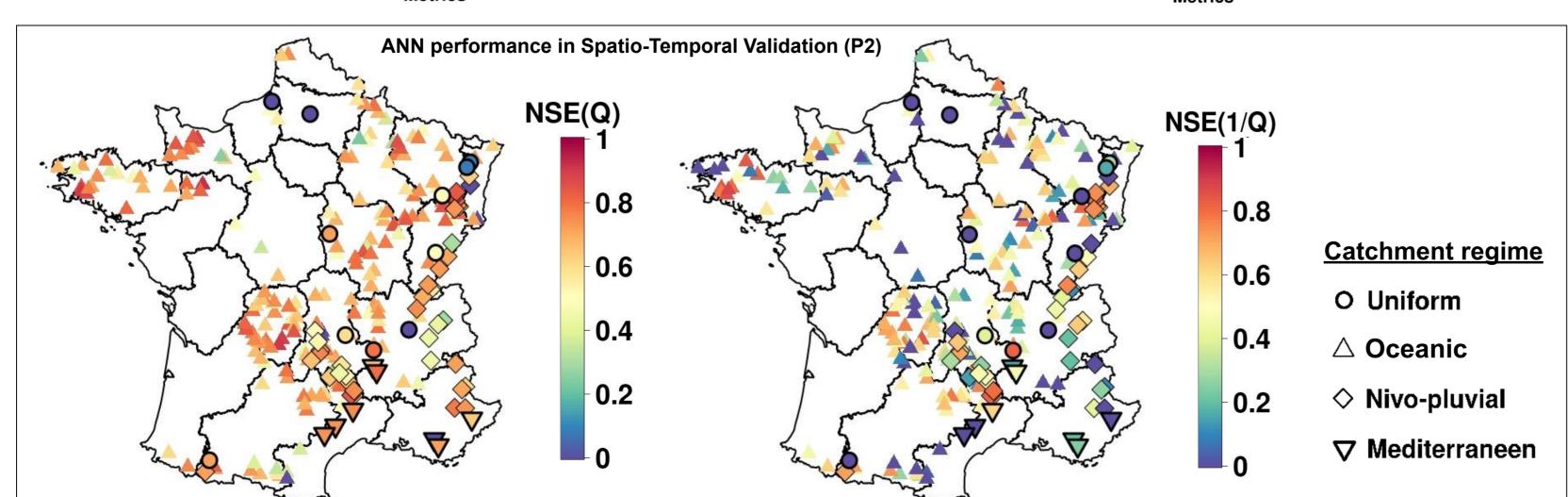
Evaluation Metric:

Metric	Definition
NSE(Q)	$NSE(Q_{ m sim},Q_{ m obs})$
NSE(rQ)	$NSE(\sqrt{Q_{ m sim}},\sqrt{Q_{ m obs}})$
NSE(1/Q)	$NSE\left(\frac{1}{Q_{\rm sim}}, \frac{1}{Q_{\rm obs}}\right)$
NSE(QMM)	$NSE(QMM_{ m sim},QMM_{ m ob})$
QA Perf	$\left 1 - \left 1 - rac{QA_{ m sim}}{QA_{ m obs}} ight $
QMNA5 Perf	$1 - \left 1 - \frac{QMNA5_{\text{sim}}}{QMNA5_{\text{obs}}} \right $
VCN10 Perf	$1 - \left 1 - \frac{VCN10_{\text{sim}}}{VCN10_{\text{obs}}} \right $
Q75 Perf	$1 - \left 1 - \frac{Q75_{\text{sim}}}{Q75_{\text{obs}}} \right $

 $NSE = 1 - \frac{\sum (Q_{obs} - Q_{mod})^2}{\sum (Q_{obs} - Q_{mod})^2}$

4 Results in Regionalization





REFERENCES

- ANN consistently outperforms ML and Uniform optimization across most metrics.
- The largest gains appear on low-flow indicators (QMNA5, VCN10), underscoring ANN's strength for drought-prone regimes.
- ML also delivers clear improvements over **Uniform**, confirming the benefit of spatial regionalization.
- These performance gaps remain stable under both **temporal** and **spatio-temporal** validation, indicating good generalization to unseen periods and basins.
- Oceanic & Nivo-pluvial: consistently strong performance on NSE[Q] with robust flow-dynamics reproduction, though low-flow skill (NSE[1/Q]) still drops.
- Mediterranean: more variable performance, with clear weaknesses on low flows (NSE[1/Q]).
- **Uniform:** poorest performance overall, with difficulty reproducing both flow dynamics (NSE[Q]) and low flows (NSE[1/Q]).

CONCLUSION

The ANN emerges as the most robust and reliable calibration strategy in this study both in temporal and spatio-temporal validation. It provides a robust improvement in well-structured regimes but struggles in highly variable or poorly defined regimes. This highlights the need for further adaptations to enhance generalization in Mediterranean and Uniform catchments.

[6] Garcia, F., Folton, N, Odin L., (2017) Which objective function to calibrate rainfall-runoff model for low-flow index simulations? Hyd. Sciences Jour., 62(7), 1-18.

[1] Vidal, J.-P., Martin, E., Franchisteguy, L., Baillon, M., and Soubeyroux, J.-M. (2010). "A 50-year high-resolution atmospheric reanalysis over France with the Safran system." International Journal of Climatology, 30(11), 1627–1644.