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In this study the Mars Regional Atmospheric Modeling System (MRAMS) has been applied to the Gale Crater region, the landing site of the Mars Science Laboratory (MSL) Rover
Curiosity. The landing site is at one of the lowest elevations in Gale, between the crater rim and the ~4 km high central mound known as Mt. Sharp. As Curiosity heads toward its long
term target of Mt. Sharp, the meteorological conditions are expected to change due to the increasing influence of topographically- induced thermal circulations that have been
predicted by numerous previous studies [1-4]. The types of perturbations of pressure, air and ground temperatureS and wind measured by the Rover Environmental Monitoring
Station (REMS) [5] have never been observed at other locations and these data provide a great opportunity to test the models at the most meteorological interesting area measured to
date. We provide a comparison of MRAMS predictions (pressure, air and ground temperatures and wind) to the REMS data available at the location of the Rover for sols 21-25 (when
first regular REMS measurements were obtained, Ls 163), sols 51-55 (Ls 180) and sol 215 (Ls 270), in order to provide a baseline of model performance.
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