

EPSC 2015 Oral Program TP3: Venus Convener: C. F. Wilson 11:30-11:45, 1 Oct, 2015

Simulation of Venusian atmosphere by AFES

(Atmospheric general circulation model For the Earth Simulator)

Norihiko Sugimoto

(Keio University & LMD, Ecole Polytechnique)
H. Kashimura¹, M. Takagi², Y. Matsuda³, H. Ando⁴, T. Imamura⁴, T. Shimizu², W. Ohfuchi¹, T. Enomoto⁵, Y.-O. Takahashi⁶, and Y.-Y. Hayashi⁶
(¹JAMSTEC, ²Kyoto Sangyo Univ., ³Tokyo Gakugei Univ., ⁴ISAS/JAXA, ⁵DPRI/Kyoto Univ., ⁶CPS/Kobe Univ.)

<u>This study is conducted under the joint research project of the Earth Simulator Center with</u> <u>title "Simulations of Atmospheric General Circulations of Earth-like Planets by AFES."</u>

Today's focus

Introduction of AFES simulation for Venus

- We have currently three main scientific results 1. Baroclinic instability & Wayes
 - Main collaborator: M. Takagi (Kyoto Sangyo Univ.,) Y. Matsuda (Tokyo Gakugei Univ.)

cf. Sugimoto et al., JGR (2014), GRL (2014)

- 2. Energy spectra (Venus vs. Earth)
 - Main collaborator: H. Kashimura (ISAS/JAXA)

cf. Kashimura et al. (in preparation)

- 3. Polar vortex & Cold collar (Model vs. Obs.)
 - Main collaborator: H. Ando (ISAS/JAXA)

T. Imamura (ISAS/JAXA)

cf. Ando et al., (under revision); see also P14, Oct 01 (Today), 17:45-19:30

I have performed all numerical simulations on the Earth Simulator and data analysis of 1.

Outline

1. Introduction

- AFES project (<u>A</u>tmospheric GCM <u>F</u>or the <u>Earth Simulator</u>)
- Strategy and Targets of Venus simulation

2. Model description

Experimental settings; radiative process, initial condition...

3. Results (in briefly)

- Runs without solar heating
 - *Baroclinic instability (T42L60)*
- Runs with solar heating
 - Baroclinic & Neutral waves (T63L120)
 - Energy spectra (T159L120)
 - Polar vortex & Cold collar (T42L60)

4. Summary

T; trancation wavenumbers L; vertical layers

1. Introduction

AFES project

(Y.-Y. Hayashi, Y. O. Takahashi, W. Ohfuchi, T. Enomoto, etc)

To understand the varieties of global circulation in planetary atmospheres

Mars, Venus, Jupiter, Aqua-planet..

Common framework of Atmospheric GCM (AFES)

I am a member of Venus group and will report the results of Venus

Computational Efficiency

AFES (AGCM For the Earth Simulator)

Optimized for parallel vector super computer

T639L96 simulation for Mars (Takahashi et al.)

Node number	64 node		
Vector efficiency	99.4%		
Parallel efficiency	99.8%		
CPU time	1 martian days / ~4 hours		

Mars simulation; grid intervals ~11 km, Nx=1920 grids, Ny=960 grids, Nz=96 layers

Venus GCM studies

Super-rotation is driven by

- ✓ Mean meridional circulation
 - Gierasch 1975; Yamamoto & Takahashi(YT)2003
- ✓ Thermal tides
 - Fels & Lindzen 1986; Takagi & Matsuda (2007)

Basically, starting from motionless state, long time integration, low resolution, not realistic solar heating and static stability

BY

References	Horizontal resolution		Vertical grid
Yamamoto & Takahashi (2003)	T10 (~ 11° × 11°)	32×16 grids	50 levels
Lee et al. (2005)	5° × 5°	72×36 grids	32 levels
Kido & Wakata (2008)	T21 (~ 5.6° × 5.6°)	64 × 32 grids	60 levels
Takagi & Matsuda (2007)	≦T21 (~ 5.6° × 5.6°)	64 × 32 grids	60 levels
Lebonnois et al. (2010)	7.5° × 5.6°	48 × 32 grids	50 levels
Parish et al. (2011)	1.2° × 0.9°	300×200 grids	50 levels

Further Venus GCM studies

Inter comparison project

 Super-rotations are quite different among the models

> Multiple equilibrium? Waves or Missing process?

More realistic GCM

- ✓ New radiation code (Ikeda, 2011)
- ✓ Gravity wave parameterization
- ✓ Microphysics (YT2006)

BY

- ✓ Topography (Lebonnois et al., 2010)
- ✓ Middle atmosphere (YT2011, Gilli2015)
- ✓ Non-hydrostatic (Mingalev et al., 2012)

Lebonnois et al. (2013)

<u>Strategy</u>

Start from idealized super-rotation

 Saving computational cost with high resolution run

 Maintain super-rotation with realistic solar heating

 under the realistic static stability
 not including artificial forcing

 Targets

Focus on atmospheric motions near the cloud

- ✓ Baroclinic instability; No observations but predicted in the theoretical studies
- ✓ Waves; Space-time variation of super-rotation, source, transport...
- ✓ Energy spectra; Traditional analysis on Earth but no Venus study so far
- Polar vortex; "S-shaped" structure frequently observed in VIRTIS
- ✓ Cold collar; Puzzling cold latitudinal band which is not reproduced in GCM

Final goal: To understand fundamental mechanism of super-rotation

2. Nodel description see Sugimoto et al. (JGR2014) ■ Venus AFES

- ✓ 3-D Primitive equation on sphere (hydro static balance) without moist processes
- ✓ Resolution: T42L60, T63L120, T159L120 ($\Delta x \& \Delta y \sim 79 \text{km} \Delta z \sim 1 \text{km}$)
- ✓ Specific heat: Cp is constant (1000 Jkg⁻¹k⁻¹)
- ✓ Horizontal hyper-viscosity: 0.1(T42), 0.03(T63), 0.01(T159) Earth days for 1/e
- ✓ Vertical eddy viscosity: $0.15m^2s^{-1}$
- ✓ Rayleigh friction: lowest and above 80km(sponge layer except for zonal flow)

CC

Solar heating

Lat

80km

No topography and planetary boundary layer

Solar heating

- ✓ Zonal and diurnal component of realistic heating
- Based on Tomasko et al. (1980) and Crisp (1986)

Infrared radiative process

✓ Simplified by <u>Newtonian cooling</u>: $dT/dt = -\kappa (T-T_{ref}(z))$ κ : based on Crisp (1986)

 $T_{ref}(z)$: horizontally uniform field

Initial condition: Super-rotation

- ✓ Zonal flow increases with height linearly from ground to 70 km. 100 m/s above 70 km (const.).
- ✓ Meridional distribution: solid-body rotation.
- Temperature field is in balance with zonal flow field (gradient wind balance).
- Static stability: $\Gamma(z) = dT/dz + g/Cp$

Mimic observed realistic static stability.

Super-rotation near the cloud

- ✓ Constant velocity at equatorial region with weakly mid-latitude jets.
- ✓ Close agreement with observations.

AFES results

Observations: Doppler measurements

Machado et al. (2014)

Life cycle of baroclinic waves (at mid-latitudes, 60 km)

- Large temperature gradient maintains baroclinic basic state continuously.
- ✓ Baroclinic waves appear intermittently (zonal wave number 1).
- ✓ Barotropic waves are also significant in the polar region.

Rotation

(Each interval is 6 hour)

Vertical structure and time variations of zonal flow.

- ✓ Typical vertical structure of baroclinic waves.
- ✓ Baroclinic waves cause spatio-temporal variations of super-rotation.

660

Day 650

680

700

Days after April 20, 2006

Time variations are qualitatively similar to observational study

720

740

Day 740

Rossby-type waves at the cloud top level (70km). Propagating against zonal-mean zonal flow (periods of 5.8 days). Z' ~200 m, V' ~20 m s⁻¹ at 70 km. In phase of T' ~3 K at 60 km.

Residual mean meridional circulation (RMMC) on NH

- ✓ Baroclinic waves make a local meridional circulation
- ✓ Acceleration/deceleration with north/south heat transport

Red Vector: EP flux Blue contours: RMMC (V*, W*) Color tones: dU/dt [m/s/day] Grey contours: Ubar

Baroclinic waves might contribute to material transport (cloud formation) in the polar region

Momentum and heat flux averaged over 90 Earth days.

- ✓ Accelerate where unstable modes grow using <u>available potential energy</u>.
- ✓ Typical heat transports (from equator to pole) of baroclinic instability.

Baroclinic waves contribute to momentum and heat transport significantly

Polar vortex & Cold collar (T42L60 run)

 "S-shaped" polar vortex with cold latitudinal band "cold collar"

Puzzling structure is well reproduced in the Venus GCM for the first time

see Poster, P14, Oct 01 (Today), 17:45-19:30

90N

60N

30N

EQ

30S

60S

Zonal flow & wave activity

 \Rightarrow Baroclinic waves and generated neutral waves transport momentum and heat significantly and keep the structure of super-rotation.

Energy spectra; gravity waves might be more important than Earth.
Polar Vortex and Cold collar; well reproduced in our Venus GCM.

Kelvin-type waves at the cloud bottom level (50km) Propagating faster than zonal-mean zonal flow (periods of 6.2 days) Z'~10 m, V'~5 m s⁻¹ at 40 km. In phase of T'~3 K at 50 km.

Overall characteristics of waves are consistent with Hosouchi et al. (2012)

Similar to unstable modes developed by shear instability in spherical shallow water model (Iga and Matsuda, 2005)