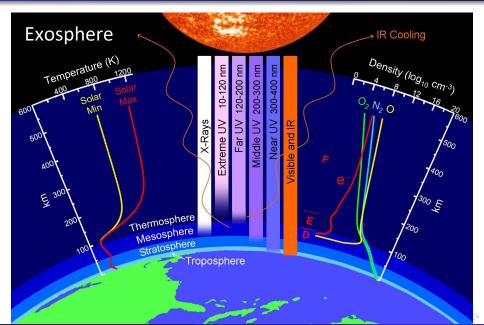
Imperial College London

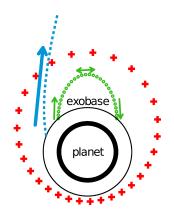
Influence of the radiation pressure on the planetary exospheres: density profiles, escape flux and atmospheric stability

A. Beth, P. Garnier, D. Toublanc, I. Dandouras, C. Mazelle

EPSC 2015, September 28th, 2015



Outline


- Context
- 2 Approach and formalism
- Oensity profiles and escape flux
- Implication on stability of planetary atmospheres
- Conclusions

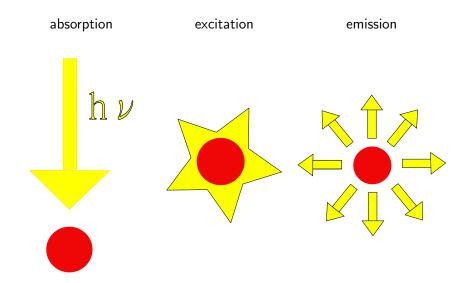
Description of the exosphere

Types of exospheric particles

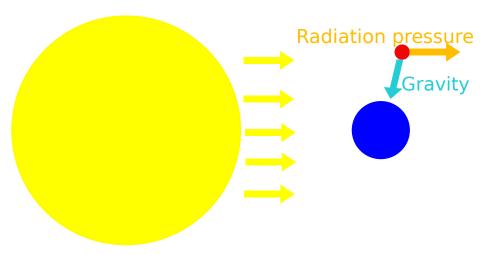
The trajectories of neutrals are determined by external forces such as gravitation, <u>radiation pressure</u>. With only gravity, the trajectories are conics:

- ballistic : describing ellipses crossing the exobase
- satellite : describing ellipses <u>not</u> crossing the exobase
- escaping : coming from the exobase going to infinity

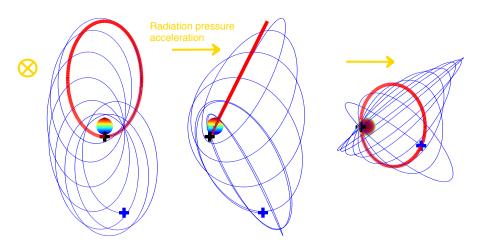
Chamberlain (1963) formalism


Chamberlain (1963) proposed an analytical formula to estimate the exospheric density and the contribution of each population

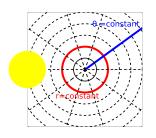
$$n(r) = n_{bar}\zeta(\lambda) = n(r_{exo})e^{\lambda - \lambda_{exo}}(\zeta_{bal} + \zeta_{esc} + \zeta_{sat})$$


$$\lambda(r) = \frac{GMm}{k_B T_{\text{exo}} r} = \frac{\text{gravitationnal energy}}{\text{thermal energy}}$$

The ballistic particles are the main contribution near the planet.


The radiation pressure principle

Additional radiation pressure effect



Trajectory for an Hydrogen at Earth

Hamiltonian approach based on the Stark effect problem

$$\mathcal{H}(r,\theta,\phi,p_r,p_\theta,p_\phi,t) = \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2} + \frac{p_\phi^2}{2mr^2\sin^2\theta} - \frac{GMm}{r} + \underbrace{mar\cos\theta}_{\text{radiation}}$$
radiation
pressure

Change of frame

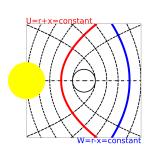


FIGURE: spherical frame

FIGURE: parabolic frame

$$\mathcal{H}(u, w, p_u, p_w, p_\phi) = \frac{2up_u^2 + 2wp_w^2}{m(u+w)} + \frac{p_\phi^2}{2muw} - \frac{2GMm}{u+w} + ma\frac{u-w}{2}$$

Topology of equipotentials

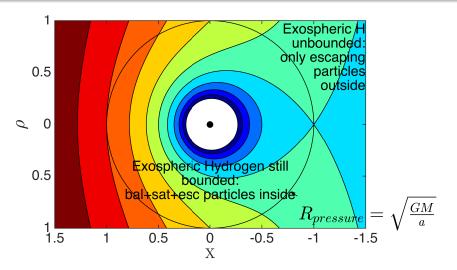
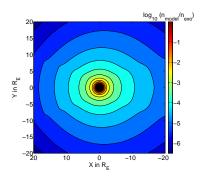
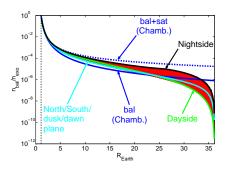
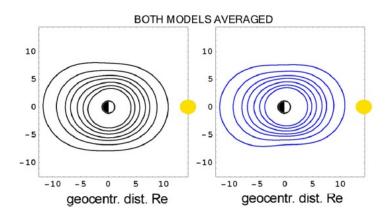



FIGURE: Equipotentials with the additional radiation pressure effect. Equipotentials are closed at finite distance, closed in the antisolar direction at $R_{pressure}$. N.B.: $\rho^2 = y^2 + z^2$, distances are given in units of $R_{pressure} = \sqrt{GM/a}$.

2D Ballistic particles density model (generalization of the 1D Chamberlain's one) with 2 parameters

$$n(r,\theta) = N_{\text{exo}} \exp(\lambda - \lambda_c) \exp\left(-\frac{ma}{k_B T} (r - r_{\text{exo}}) \cos \theta\right) \times \zeta_{bal}(r,\theta)$$

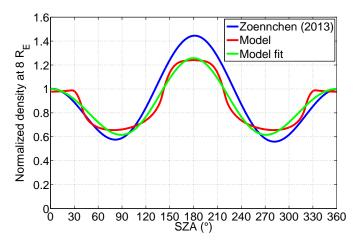
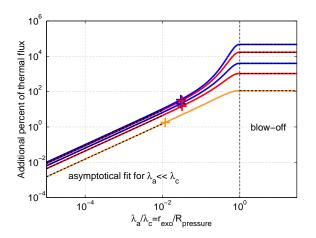
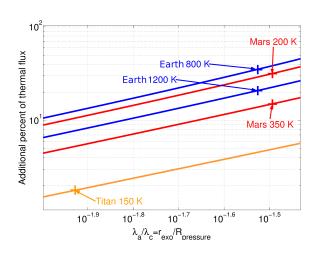

FIGURE: My model : equal density lines for H at Earth

FIGURE: Radial density profiles depending on the direction at Earth

Comparison with observations at Earth (Zoennchen et al. 2013)



Comparison with observations at Earth (Zoennchen et al. 2013)


Agreement with observations: exospheric asymmetries well reproduced by the model. Radiation pressure increases ballistic densities (e.g. $\times 4$ at 10 R_E)

Thermal escape flux modified by radiation pressure at the subsolar point

Increase of the thermal flux due to radiation pressure (vs Jeans' formula). The x-axis depends on \sqrt{a} . For $r_{\rm exo} = R_{\rm pressure}$, all particles at the exobase escape and we have a blow-off regime ← Exospheric Hydrogen is not bounded any more

Thermal escape flux modified by radiation pressure at the subsolar point

Earth 20 - 35%Mars 15 - 30%Titan 1 - 2%

Three Body Problem + radiation pressure

Two additional external forces: centrifugal force and stellar gravity

What happens? The potential becomes

$$\Omega(x,y,z) = \underbrace{\frac{1}{2}(x^2 + y^2)}_{\text{centrifugal potential}} + \underbrace{\frac{\mu}{d_{planet}}}_{\text{planetary gravity}} + (1 - \beta) \underbrace{\frac{1 - \mu}{d_{star}}}_{\text{stellar gravity}}$$

$$\beta = \frac{\text{radiation pressure}}{\text{stellar gravity}} \sim 0,5$$
 to 2 (Solar system) and higher (e.g. HD 209458b)

$$\mu = \frac{M_{planet}}{M_{Star} + M_{planet}}$$

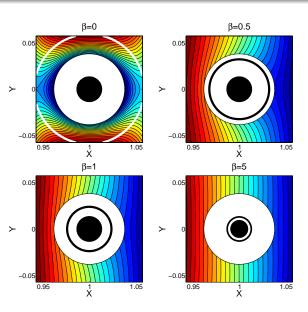
 $\Omega = \text{constant gives equipotentials.}$

Sphere of gravitational influence modified by radiation pressure

Hill's sphere radius scaled by planet-star distance

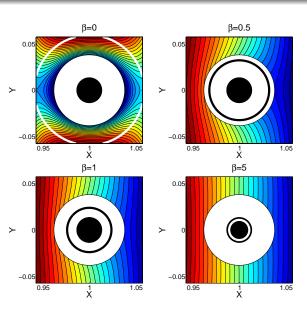
$$3R_H^3 - \mu \approx 0 \Longrightarrow R_H = \sqrt[3]{\frac{\mu}{3}}$$

Derivation of a new Hill's sphere radius (R_H) taking into account the radiation pressure given by


$$3R_H^3 + \beta R_H^2 - \mu \approx 0$$

The only positive root of this polynom is the solution

Planets	$\beta = 0$	$\beta = 0.5$	$\beta=2$	$\beta = 4$	$\beta = 40$
Venus	167.0	39.29	19.76		4.42
Earth	234.9	57.13	28.75		6.44
Mars	319.7	53.88	27.00		6.04
HD 209458b	4.24			0.88	


TABLE: Hill's sphere radius (or exopause) in planetary radii for Hydrogen with the effect of the radiation pressure ($\beta = 0, 0.5, 2, 40$) for different planets (Venus, Mars, Earth and HD 209458b).

Case study: HD 209458b

Topology of the equipotentials (red : high potential, blue: low potential) for increasing β values : 0, 0.5, 1 and 5. The decreasing circle corresponds to the circle passing through the Lagrange point L_2 : the Hill's sphere by definition. For high radiation pressures, the exopause goes below the exobase, limit of the dense atmosphere (white disk).

Case study: HD 209458b

For species with $\beta > 0.3$, the exopause is below the exobase

 \implies the species is no longer gravitationally bounded to the planet, the species escapes from the atmosphere \implies blow-off regime for Hydrogen ($\beta \approx$ 4 according to Bourrier et al. (2013)) due to the radiation pressure and not to the Roche lobe location

• 2D generalization to the whole exosphere of the exospheric density model by Bishop and Chamberlain (1989) including the radiation pressure effect

- 2D generalization to the whole exosphere of the exospheric density model by Bishop and Chamberlain (1989) including the radiation pressure effect
- Strong increase of exospheric densities by radiation pressure

- 2D generalization to the whole exosphere of the exospheric density model by Bishop and Chamberlain (1989) including the radiation pressure effect
- Strong increase of exospheric densities by radiation pressure
- Exospheric asymmetries at Earth well reproduced: tail phenomenon and Dusk/-Dawn/North Pole/South Pole asymmetry

- 2D generalization to the whole exosphere of the exospheric density model by Bishop and Chamberlain (1989) including the radiation pressure effect
- Strong increase of exospheric densities by radiation pressure
- Exospheric asymmetries at Earth well reproduced: tail phenomenon and Dusk/-Dawn/North Pole/South Pole asymmetry
- Increase of the thermal flux by the radiation pressure a: the additional flux is proportional to \sqrt{a} for small a

- 2D generalization to the whole exosphere of the exospheric density model by Bishop and Chamberlain (1989) including the radiation pressure effect
- Strong increase of exospheric densities by radiation pressure
- Exospheric asymmetries at Earth well reproduced: tail phenomenon and Dusk/-Dawn/North Pole/South Pole asymmetry
- Increase of the thermal flux by the radiation pressure a: the additional flux is proportional to \sqrt{a} for small a
- For high a, the atmosphere reaches a blow-off regime (cf. HD 209458b)

- 2D generalization to the whole exosphere of the exospheric density model by Bishop and Chamberlain (1989) including the radiation pressure effect
- Strong increase of exospheric densities by radiation pressure
- Exospheric asymmetries at Earth well reproduced: tail phenomenon and Dusk/-Dawn/North Pole/South Pole asymmetry
- Increase of the thermal flux by the radiation pressure a: the additional flux is proportional to \sqrt{a} for small a
- For high a, the atmosphere reaches a blow-off regime (cf. HD 209458b)
- Motion completely solved analytically for a particle subject to gravity and radiation pressure (arxiv.org/abs/1502.06701, under review)
- Accepted paper about this first part (density): 10.1016/j.icarus.2015.08.023
- Future papers about the thermal escape flux (in prep.) and equipotentials (under review)