Nitrogen and Oxygen Budget ExpLoration (NOBEL): A Planetary Mission to the Earth

M. Yamauchi (IRF, Kiruna, Sweden)

I. Dandouras and H. Rème (IRAP, Toulouse, France)

O. Marghitu (ISS, Bucharest-Magurele, Romania) and NOBEL (ex NITRO) proposal team

(proposal name is changed from NITRO to NOBEL to reflect clearer science)

Outline

Introduction (Objectives and tasks)

Science overview

- 1) Scientific goal: Why nitrogen and isotope ratio?
- 2) Mission rationale: *How will NOBEL answer?*

Mission overview

- 1) Orbit
- 2) Payload, accommodation, measurement resolution
- 3) Conjugate observations: advantage of the Earth

Extra science

Summary

Mission objectives

* The Earth diagnosis (exosphere and escape)

To study both thermal and non-thermal escape rate of major atmospheric components (nitrogen and oxygen) from the Earth, a magnetized planet. This requires the first-time exploration of the exosphere as well as the firsttime examination of isotope ratios in the magnetosphere/ ionosphere.

* Atmospheric evolution of a magnetized planet The measurement quality must enable modelling of the escape on a geological time scale, and should be a good reference in understanding planetary evolution from their isotope ratio and N/O ratio.

What is to be measured

- (1) Density, fluxes, and energy-angle distribution for N^+ , N_2^+ , O^+ , and H^+ in the magnetosphere.
- (2) Neutral and ion densities for N, N₂, O, O₂, at upper exosphere/ionosphere (> 800 km).
- (3) Isotope ratio of neutrals and cold ions (¹⁷O/¹⁶O, ¹⁸O/¹⁶O, and H/D) in the upper ionosphere, exosphere, and magnetosphere.
- * All the above data for a wide range of solar wind and solar EUV conditions

Why exosphere?

Mandatory information for escape modeling (For thermal and some non-thermal escape)

Very dynamic for both density and ionization (Mars observation indicates very strong unknown factors other than EUV, e.g., atmospheric coupling)

Poor observational knowledge

(No knowledge of > 800 km for nitrogen, > 1500 km for oxygen, and all altitude for isotope ratio)

Source of cold ions above the ionosphere

(They contribute feeding ions of non-thermal escape)

Why exosphere?

No direct neutral observations > 1500 km

E

Why nitrogen?

Behavior is different from Oxygen with similar mass $(N_2 \rightarrow N_2^+ \rightarrow N^+ \text{ whereas } O_2 \rightarrow O \rightarrow O^+, \text{ and completely different solar/geomagnetic dependence})$

Scientifically important element

(a representative volatile, essential for amino-acid, and 5% change affect biology-induced circulation)

Escaped amount could be significant for biosphere

(atmosphere/soil inventory = $4-5 \times 10^{18}$ kg. Escape matters if $\geq 10^{26}$ ions/s)

Not well known, but now possible to measure (impossible 5 years ago)

Why isotope ratio?

Used as indicator of escape from planet

(the isotope ratios are different between different escape processes)

Poor observational knowledge

(no knowledge in the magnetosphere/ionosphere)

Where is the optimum orbit?

Payload

Baseline

- * Cold ion/neutral mass spectrometer
 (1) m/∆m ~ 2000 /slow (Bern)
 (2) m/∆m ~ 50 / fast (could be optional?)
- * lon mass analyzers (0.03 30 keV):
 (1) m/q < 20 (Toulouse)
 (2) m/q > 10 (Kiruna)
- * Energetic Ion mass analyzer (UNH)
- * Magnetometer (Graz)
- * Langmuir probe (Brussels)
- * Electron analyzer (London)
- * UV/visible emissions (Tokyo?) N⁺, N₂⁺, N₂, O⁺, O⁺
- * Potential control (SC subsystem)

Optional

- * Waves analyser with search coil (*Prague and Orleans*)
- * Auroral / airglow camera (could be baseline? Tohoku)
- * ENA monitoring (TBD)
- * IR emissions (if sensitivity is high)

Advantage of the Earth

Sufficient dry mass

(many heavier instruments)

Sufficient telemetry

(without large antenna that blocks FOV)

Low altitude conjugate observations is possible

(any low-altitude spacecraft such as NASA mission, and Ground-based observations such as EISCAT_3D: conjugate > 20 passes/yr)

Extra science

Planetary Evolution: meaning of isotope ratio and N/O ratio of a planet in terms of the escape history.

Exoplanet modeling: tuning interpretation of optical data on exoplanets by having both spectral and in-situ measurements.

Ionosphere Physics: ionization chemistry and transport for different external conditions, and 3-D dynamics in the upper ionosphere together with EISCAT_3D.

Inner Magnetospheric Dynamics: using nitrogen as an independent tracer from oxygen.

Space Plasma Physics (acceleration): different initial velocities between M/q=14 and M/q=16 give extra information.

Summary

With recently developed reliable instrumentation, NOBEL will systematically study

- the exospheric conditions,
- nitrogen budget,
- isotope ratio of cold ions/neutrals above 1000 km

The knowledge is mandatory in estimating presentday's thermal/non-thermal escape as well as behaviors of exosphere.

The required instrumentation can also answer questions in the other areas.

