A Transiting Extrasolar Ring System: Indirect Evidence for Exosatellite Formation?

Credit: Ron Miller

Matthew Kenworthy // Leiden Observatory EPSC // 30 September 2015

Collaborators: E. Mamajek // S. Lacour // M. Ireland //A. Kraus // A. Triaud // F.J. Hambsch // D. Reichart // T. van Werkhoven // E. Scott // M. Pecaut

Young pre-MS stars in an OB Association

Pre-MS Candidate J1407

d = 133 +- 12 pc (kinematic distance)

Photometry consistent with 16 Myr isochrones

Baraffe et al. (1998) isochrones

The star follows BB curve

Super Wide Angle Survey for Planets (SWASP)

Rapid photometry (30 sec) using several wide angle cameras

Searching for hot Jupiter transits

SuperWASP South (SALT, South Africa)

Pollacco et al. 2006, Butters et al. 2010

All Sky Automated Survey (ASAS)

Maps whole sky about once every three days

Long term photometric monitoring for variables

SuperWASP South (LCO, Chile)

Pre-MS Candidate J1407

12.7 mag, K5 pre-MS star

Central eclipse duration of 56 days

van Werkhoven et al. (2014)

Eclipse by substellar companion alone?

NO - can't get 95% eclipse

Red giant eclipsing a bluer hotter star?

NO - system too young for NS or WD NO - no strong X-ray source

Circumbinary/stellar disk?

NO - Not enough NIR excess

NO - Cannot reproduce eclipse structure

Eclipse by a large ring system

Estimating the size of the object

$33 \text{ km.s}^{-1} \times 56 \text{ days} \sim 0.8 \text{AU}$

How the rings change the light curve of J1407

Rings smoothed by star's disk gives the ring plane geometry

Min. speed [km/s]

Rings smoothed by star's disk gives the ring plane geometry

Saturn's rings

radius

Tiscareno review 2013 and Colwell 2009

Mass of J1407b's rings equals 0.6 Earth

...and are we seeing clearing out with an exomoon?

Ring system 200 times bigger than Saturn's rings

...and ultimately unstable - will accrete into moons

If you put the rings around Saturn....

...we'd be able to see it at twilight from Earth!

Is this possible?

Hill radius

RO

Hill sphere filling fraction is ξ

Radial Velocity

Keck and VLT imaging

Dynamical Stability

Ruling out other transits

Conclusions

J1407b is easily reachable from the ScoCen Terminus. Di-weekly jumps to Mamajek Orbital Station, and then daily gliders to Port Anja.

- Rings fill the Hill sphere
- Photometric followup
- Looking for the rings using ALMA and ZIMPOL
- The hunt for rings in archival data (Leiden master's student Julia Heuritsch)

Papers, data and code at: http://bit.ly/j1407b

Geometry of Eclipsing ring

Eclipsing by a ring system

Time