





# Preliminary Results from the JIRAM Observations of Jupiter Poles acquired during the first orbit of Juno

B.M. Dinelli

ISAC-CNR

F. Fabiano, A. Adriani, A. Mura, M.L. Moriconi, , F. Altieri, G. Sindoni, G. Filacchione, F. Tosi, A. Migliorini, G. Piccioni, R. Noschese, A. Cicchetti, S.J. Bolton, J.E.P. Connerney, S.K. Atreya, D. Turrini, S. Stefani, C. Plainaki, A. Olivieri and M. Amoroso.









Jovian InfraRed Auroral Mapper

JIRAM Optical Head

ISAC





**JIRAM Scientific Objectives** 

Primary Goals Atmospheric Science Hot spots and their chemistry Aurorae Clouds Secondary Goals (Target of Opportunity Science) Satellites

JIRAM is a camera and a spectrometer

Camera for auroral emissions, fwhm 3.32-3.60  $\mu$ m Camera for thermal emissions, fwhm 4.54-5.03  $\mu$ m Spectrometer 2-5  $\mu$ m, resolution 9nm, av. fwhm 12.5 nm

JIRAM is mounted on the spacecraft aft deck. It is equipped by a de-spinning mirror to Join Informed State for the s/c spinning. The mirror can be set to scan the planet in the spin plane.



North Pole – 16000 spectra

South Pole – 30000 spectra













Auroral Spectrum in the H<sub>3</sub><sup>+</sup> window





ISAC









- JIRAM spectra used to infer H<sub>3</sub><sup>+</sup> temperature (T) and column density (CD) distribution in the auroral region
- The analysis makes use of an iterative Bayesan procedure to fit simulated spectra to observations
- The spectra are simulated assuming that the observed molecular emissions are optically thin and that a single temperature can be used for all the transitions of the same molecule (LTE)
- The intensity of each transition is computed with the  $I_{im} = N_m (2J_{im} + 1)g_{im}A_{im}hcv_{im} \frac{exp(-hcE_{im}/KT_m)}{4\pi Q_m(T_m)}$
- All the computed intensities are then convolved with the instrument spectral response















#### **North Pole**













### **North Pole**

















**Discussion - North Aurora** 

**Region A** High CD inside statistical oval High T outside statistical oval







**Region A Region B and C** High CD along model oval High CD along statistical oval 330° 30° 330° 0° 30° 3.0 1000 975 2.5 300° 60° 300° 60° 950 S column (×10<sup>12</sup> cm 925 temperature 2.0 900 270° 90° 270° 1.5 90° 875 ۔ 1.0 <sup>+</sup>ش 850 825 240° 120° 120° 240 0.5 800 210° 210° 180° 150° 150° 150° **Region B Regions A and C** High T internal to the oval Diffuse regions of high T









North (blue)/South (red) comparison





3







- North and South Auroral regions quite different
- In general the H<sub>3</sub><sup>+</sup> emission in the South Aurora is more intense than the North Aurora
- H<sub>3</sub><sup>+</sup> CD peak follows oval pattern in both Auroras
- H<sub>3</sub><sup>+</sup> T peak shows oval pattern in the North Pole, oval pattern less pronounced in the South Pole
- North Aurora H<sub>3</sub><sup>+</sup> CD oval not superimposed to the T oval
- South Aurora widespread regions of high H<sub>3</sub><sup>+</sup> T (higher than in the North)
- H<sub>3</sub><sup>+</sup> CD of similar magnitude in both Auroras











- A first run of the retrieval code highlighted that the spectral contribution of methane was not negligible
- Therefore among the free parameters of the retrievals we introduced methane CD (T was fixed to 500 K)
- The spectra of the regions where CH<sub>4</sub> CD was highest have been used to estimate CH<sub>4</sub> average temperature
- The results of the CD retrieval used to evaluate CH<sub>4</sub> spatial distribution at the Poles



















## Average CH<sub>4</sub> spectra and simulations





| Temperature | χ² North | χ² South |
|-------------|----------|----------|
| 200         | 2.5      | 17.4     |
| 350         | 1.9      | 9.6      |
| 500         | 1.7      | 4.5      |
| 650         | 1.9      | 2.9      |
| 800         | 2.2      | 3.3      |









### **North Pole**

### **South Pole**













- JIRAM observed both Jupiter Poles during PJ1
- Detailed analysis of H<sub>3</sub><sup>+</sup> emission in the 3 microns region enabled to retrieve the spatial distribution of its CD and T
- North and South aurorae different in both intensity and geographycal distribution
- Hot methane emission has been identified both at North and South Pole
- The CH<sub>4</sub> temperature (500 North, 650 South) suggests hot methane altitude different in North and South Poles
- The analysis of next PJs will help in understanding auroral behaviour
- JIRAM limb observations of the auroral regions will help in characterising the vertical distribution of H<sub>3</sub><sup>+</sup> and possibly methane



