Semi-automated surface mapping via unsupervised classification

Mario D'Amore¹, Rémi Le Scaon², Jörn Helbert¹, Alessandro Maturilli¹

¹ (<u>mario.damore@dlr.de</u>) Institute for Planetary Research, DLR, Rutherfordstrasse 2, Berlin, Germany; ²Ecole Polytechnique, Université Paris-Saclay,Paris, France

<nowledge for Tomorrow

Keypoints

Goal: automated unsupervised characterization of body surface from remote sensing multi-instrument data.

Steps :

- Multidimensional classification problem using no spatial information.
- Define surface "units" based on multiple data, mainly spectral.
- Characterization of surface "units".
- Visualize units spatial distribution and correlate with other mapping efforts (expert geological/morphological units maps)

Examples :

- MESSENGER : point-spectometer MASCS VIS channel (vis/nir) range + X-ray spectrometer XRS for chemical composition
- DAWN VIR Vesta spectral cubes

MASCS DLR Database – Data Extraction

Area of Interest and Polygons definition

Spectra in the area

9740 spectra, in 4442.510 ms

MASCS DLR Database – Data Extraction

Polygons and measurements intersection (automatically updated)

Spectra extraction

MASCS DLR Database – Global Grid

Reflectance(X nm)/Reflectance(700-750 nm) **1x1** degrees grid X = {350, 450, 500, 550, 600, 650} nm

MASCS DLR Database – Global Classification

K-Means clustering, standardized features 2 Classes Partition

MASCS DLR Database – Global Classification

K-Means clustering, standardized features 3 Classes Partition

MASCS DLR Database – Global Classification

K-Means clustering, standardized features Uo to 30 Classes Partition

MASCS Database – Global Classification

MESSENGER XRS

Classification of chemical composition data from XRS and spatial distribution.

Resolution in the south hemisphere is to low to be useful for local studies.

Classification : K-Means preprocessing : StandardScaler with 5 classes

MESSENGER MASCS + XRS

4 Classes MASCS

4 Classes XRS Mg+Al

EPSC 2017 • Mario.Damore@DLR.de • 11

VESTA DATASET

- 1830 hyper-spectral images 20 million measurements •
- ullet

STREAM ALGORITHM

HIERARCHICAL CLUSTERING

UNSUPERVISED CLUSTERING

Application : 75 data-cubes, 800 000 measurements Result : 19 core clusters, 1700 outlier clusters

UNSUPERVISED CLUSTERING

b

UNSUPERVISED CLUSTERING

Conclusions

Backup Slides

EPSC 2017 · Mario.Damore@DLR.de · 18

MASCS Database Example – Regular Grid

Global Grid (reflectance@500nm normalized)

