

Martian cloud coverage and diurnal cloud life cycle derived from Mars-Express / OMEGA data

<u>André Szantai</u>*, Joachim Audouard*, Jean-Baptiste Madeleine*, François Forget*, Alizée Pottier**, Ehouarn Millour*, Brigitte Gondet+, Yves Langevin+, Jean-Pierre Bibring+

- * Laboratoire de Météorologie Dynamique / IPSL, Université P. et M. Curie, Paris, France,
- **x** Laboratoire Atmosphères, Milieux, Observations Spatiales / IPSL, UVSQ, Guyancourt, France
- + Institut d'Astrophysique Spatiale, Université Paris-Sud, Orsay, France

1. Introduction

Objective of this study

- Construct a 4D gridded (spatio-temporal) water ice cloud database extracted from Mars Express/OMEGA spectro-imager data
- Use the derived products to determine the diurnal cloud life cycle.

OMEGA instrument :

- VNIR + SWIR (0.36 5.2 μm; 352 spectels)
- Long period of observation: MY 26-32 (1/2004 4/2015; 7722 (useful) orbit segments, > 1 billion pixels).
- Improved temporal coverage in comparison with recent heliosynchronous satellites (~fixed local time) and recent nonheliosynchronous satellites (MOM, MAVEN, ExoMars; short duration of operation).
- Near global coverage

2. Ice Cloud Index and Percentage of Cloudy Pixels

Calculation of the Ice Cloud Index (ICI)

- Pixel-based
- Derived from Langevin et al., 2007

Slope → original ICI: ICIo = I_{3.38μm} / I_{3.52μm}

Normalized IceCloudIndex : |C| = 1 - |C|o

Construction of a 4D cloud database

Highest ICI value: yellow

N summer solstice (Ls=45-135°)

- Definition of a regular grid
- 1° longitude X 1° latitude X 5° Ls X 1 h LT
- Binning of individual (pixel-based) ICIs onto grid
- Average of ICI on each gridpoint
- **Illustration: 2D ICI maps**

Main cloud features identified : aphelion belt, Hellas, major volcanoes, cloud edges of polar hoods

But:

Only ~2% of daytime gridpoints have ICI values

Longitude °

Percentage of cloudy pixels (PCP)

- 1) Selection of a threshold to extract cloudy pixels:
 - ICI > ICI_{thr} → the pixel is cloudy
 - ICI_{thr} = 0.28 (based on Madeleine et al., 2012; Audouard et al., 2014)
- 2) Percentage of cloudy pixels (PCP)⇔ cloud coverage

3) PCP filters out areas with limited average cloud coverage

Average Ice Cloud Index (Ls = $45 - 135^{\circ}$, LT = 7 - 17 h)

Average Percentage of Cloudy Pixels

Main elevation contours : red **Highest value : yellow**

3. Location of partially cloud-covered areas : examples

- Ratio of partially clouded instants
 - at a given gridpoint (Ion, lat) : Rc(PCPmin, PCPmax)
- Thick cloud cover (Rc_(95% < PCP < 100%))
 - •Major locations: Hellas, Lunae pl., Tharsis volcanoes, Olympus and Elysium M., Arabia Terra, S (reduced) and N polar hood cloud edges.
- Thin cloud cover (Rc(5% < PCP < 40%)):
 - •Complementary locations to thick cloud cover.
 - •Original locations => edges of Hellas, cloud bridges between aphelion belt and S polar hood clouds, Chryse and Acidalia Planitia.

Partial cloud coverage:

8

4. Diurnal cloud life cycle

- At one gridpoint (lon, lat, Ls), the longest life cycle :
 - 4 h in the tropics (possible : 12 h)
- Long daily cloud life cycle :
 - Need to integrate over larger areas
 - 26 areas of variable coverage :

> Large latitudinal bands (all longitudes) ==> limited areas covering specific topographic features
(ex. : Olympus Mons)

Color-coded Elevations on Mars, MOLA Altimeter, MGS Mission

Martian map with 3 studied areas (out of 26)

Tropical region (25°S – 25°N; all longitudes)

N summer solstice:

- Most cloudy period
- Dominant cloud structure : aphelion belt.
- Diurnal cycle: important cloudiness in the morning and later in the afternoon, reduced around noon.

GCM-based interpretation :

- Clouds tend to form above hygropause (10-20 km) at minimal temperatures.
- Temperatures are controlled by thermal tides.
- Max. temperature at cloud altitude around midday => cloud minimum around noon (not due to radiative heating of surface by the sun).

Chryse Planitia (20°N – 50°N; 60°W – 30°W)

- Spring (Ls = 15-90°)
 - Morning clouds appear earlier and earlier
 - Related to the presence and retreat of polar hood cloud edge
- Winter (Ls = 245-335°)
 - Clouds present around noon, dissipate in the middle of afternoon.
 - GCM-based Interpretation: low-lying fogs, formed during the night, dissipate in the afternoon after sufficient heating by the sun.
 - Thin high clouds, undetected by OMEGA but predicted by MGCM, are controlled by thermal tides.

Argyre

 $(55^{\circ}S - 35^{\circ}S; 65^{\circ}W - 25^{\circ}W)$

- · 2 main periods of cloud coverage:
 - Beginning of spring (Ls ~30°) and end of summer (Ls ~ 150°)
 - During all day (from morning to evening)

Argyre

 $(55^{\circ}S - 35^{\circ}S; 65^{\circ}W - 25^{\circ}W)$

GCM Cloud predictions :

- At 45°W (Argyre), around noon
- Maximal cloudiness at Ls=45° and 135°, minimal cloudiness and WV around S winter solstice (Ls=90°).

MCD v5.2 with climatology average solar scenario. Ls 0.0deg. Altitude 10.0 m ALS Local time 15.0h (at longitude 0)

5.0e-03 4.8e-03

4.5e-03 4.3e-03

4.0e-03

3.8e-03

3.5e-03

3.3e-03

3.0e-03

2.8e-03 2.5e-03

2- 02

2.3e-03

2.1e-03

1.8e-03

1.6e-03

1.3e-03

1.1e-03

8.4e-04

5.9e-04

3.4e-04

1.0e-04

5. Conclusion and prospects

ICI and PCP : complementary products

- · Ice Cloud Index : general indicator of presence of water ice clouds.
- Percentage of Cloudy Pixels = cloud coverage : better adapted to discriminate thick clouds and partial cloud coverage.
- ICI and PCP are robust products for water ice clouds global and regional studies.

Diurnal cloud life cycle

- 4D products: unprecedented dataset of water ice clouds for Martian climatology.
- Taking advantage of MEx elliptical orbit: the diurnal cycle can be addressed.
- Regions: trade-off between spatial and temporal coverage.
- Can help to identify or check specific meteorological features.

In the future :

- Use of OMEGA ICI and PCP products for the validation of high-resolution Martian GCMs.
- Analysis of OMEGA spectra to retrieve cloud optical depth and cloud particle size (with K. Olsen, LMD).

Thank you

EPSC-12; Riga, LV - 2017

Albedo (3.38 μm)

Albedo (3.52 μ m)

ICI

VISible

(bonus slides)

3. Location of partially cloud-covered areas

- 1) Extraction of the number of cloudy instants from PCP
 - for a given gridpoint (lon, lat): Nc_(1% < PCP < 100%)
- 2) Extraction of the number of partially-covered instants
 - NC(PCPmin % < PCP < PCPmax %)
- 3) Proportion of partially cloud-covered instants
 - 1) $Rpc(PCPmin,PCPmax) = Nc_{(PCPmin % < PCP < PCPmax %)} / Nc_{(1% < PCP < 100%)}$
 - 2) Strong / thick cloud cover : $PCP_{min} = 95 \%$; $PCP_{max} = 100 \%$
 - 3) Intermediate partial cloud cover : $PCP_{min} = 60 \%$; $PCP_{max} = 95 \%$
 - 4) Reduced partial cloud cover : $PCP_{min} = 5 \%$; $PCP_{max} = 40 \%$

References:

- Y. Langevin et al., 2007. Observations of the south seasonal cap of Mars during recession in 2004-2006 by the OMEGA visible/near infrared spectrometer onboard Mars Express. JGR-E, 112, E08S12.
- J.-B. Madeleine et al., 2012. Aphelion water-ice cloud retrieval using the OMEGA imaging spectrometer onboard Mars Express. JGR-E (Planets), 117, E00J07, doi: 10.1029/2011JE003940.
- M.D. Smith, 2004. Interannual variability in TES atmospheric observations of Mars during 1999-2003. Icarus, 167. 148-165.
- **F. Forget et al., 1999**. Improved general circulation models of the martian atmosphere from the surface to above 80 km. JGR-E (Planets), 104. 24155-24176.
- T. Navarro et al., 2014. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. JGR-E (Planets), 119. 1479-1495. doi: 10.1002/2013JE004550.
- A. Pottier et al., 2017. Unraveling the Martian water cycle with high-resolution global climate simulations. Icarus, 291. 82-106.
- J. Audouard et al., 2014. Water in the Martian regolith from OMEGA/MEX, JGR-E (Planets), 119, 1969-1989.